Something that I think EAs may be undervaluing is scientific research done with the specific aim of identifying new technologies for mitigating global catastrophic or existential risks, particularly where these have interdisciplinary origins.
A good example of this is geoengineering (the merger of climate/environmental science and engineering) which has developed strategies that could allow for mitigating the effects of worst-case climate change scenarios. In contrast, the research being undertaken to mitigate worst-case pandemics seem to focus on developing biomedical interventions (biomedicine started as an interdisciplinary field, although it is now very well established as its own discipline). As an interdisciplinary scientist, I think there is likely to be further scope for identifying promising interventions from the existing literature, conducting initial analysis and modelling to demonstrate these could be feasible responses to GCRs, and then engaging in field-building activities to encourage further scientific research along those paths. The reason I suggest focusing on interdisciplinary areas is that merging two fields often results in unexpected breakthroughs (even to researchers from the two disciplines involved in the merger) and many ‘low-hanging’ discoveries that can be investigated relatively easily. However, such a workflow seems uncommon both in academia (which doesn’t strongly incentivise interdisciplinary work or explicitly considering applications during early-stage research) and EA (which [with the exception of AI Safety] seems to focus on finding and promoting promising research after it has already been initiated by mainstream researchers).
Still, this isn’t really a career option as much as it is a strategy for doing leveraged research which seems like it would be better done at an impact focused organisation than at a University. I’m personally planning to use this strategy and will attempt to identify and then model the feasibility of possible antiviral interventions as the intersection of physics and virology (although I haven’t yet thought much about how to effectively promote any promising results).
Interesting! I think this might fall under global priorities research, which we have as a ‘priority path’—but it’s not really talked about in our profile on that, and I agree it seems like it could be a good straetgy. I’ll take a look at the priority path and consider adding something about it. Thanks!
Something that I think EAs may be undervaluing is scientific research done with the specific aim of identifying new technologies for mitigating global catastrophic or existential risks, particularly where these have interdisciplinary origins.
A good example of this is geoengineering (the merger of climate/environmental science and engineering) which has developed strategies that could allow for mitigating the effects of worst-case climate change scenarios. In contrast, the research being undertaken to mitigate worst-case pandemics seem to focus on developing biomedical interventions (biomedicine started as an interdisciplinary field, although it is now very well established as its own discipline). As an interdisciplinary scientist, I think there is likely to be further scope for identifying promising interventions from the existing literature, conducting initial analysis and modelling to demonstrate these could be feasible responses to GCRs, and then engaging in field-building activities to encourage further scientific research along those paths. The reason I suggest focusing on interdisciplinary areas is that merging two fields often results in unexpected breakthroughs (even to researchers from the two disciplines involved in the merger) and many ‘low-hanging’ discoveries that can be investigated relatively easily. However, such a workflow seems uncommon both in academia (which doesn’t strongly incentivise interdisciplinary work or explicitly considering applications during early-stage research) and EA (which [with the exception of AI Safety] seems to focus on finding and promoting promising research after it has already been initiated by mainstream researchers).
Still, this isn’t really a career option as much as it is a strategy for doing leveraged research which seems like it would be better done at an impact focused organisation than at a University. I’m personally planning to use this strategy and will attempt to identify and then model the feasibility of possible antiviral interventions as the intersection of physics and virology (although I haven’t yet thought much about how to effectively promote any promising results).
Interesting! I think this might fall under global priorities research, which we have as a ‘priority path’—but it’s not really talked about in our profile on that, and I agree it seems like it could be a good straetgy. I’ll take a look at the priority path and consider adding something about it. Thanks!