Thanks! Yeah, it might have been a bad idea to take general chip cost decreases as super relevant for specialized AI chips’ cost efficiency. I read Carey’s estimates for cost decreases as applying to AI chips, when upon closer inspection he was referring to general chips. Probably we’ll see faster gains in AI chips’ cost efficiency for a while as the low-hanging fruit is picked.
My point was something like, “Development costs to make AI chips will largely be borne by leading AI companies. If this is right, then they won’t be able to take advantage of cheaper, better chips in the same way that consumers have with Moore’s Law—i.e. passively benefiting from the results without investing their own capital into R&D”. I didn’t mean for it to sound like I was focusing on chip production capacity—I think cost efficiency is the key metric.
But I don’t have a sense of how much money will be spent on development costs for a certain increase in chips’ cost efficiency. It might be that early on, unit costs swamp development costs.
Frankly, I’m starting to think that my ideas about development costs may not be accurate. It looks like traditional chip companies are entering the AI chip business in force, although they could be 10% of the market or 90% for all I know. That could change things from the perspective of how much compute leading AI firms could afford to buy. This coupled with the aforementioned difference in cost efficiency rates between general chips and AI chips means I may have underestimated future increases in the cost efficiency of AI chips.
Thanks! Yeah, it might have been a bad idea to take general chip cost decreases as super relevant for specialized AI chips’ cost efficiency. I read Carey’s estimates for cost decreases as applying to AI chips, when upon closer inspection he was referring to general chips. Probably we’ll see faster gains in AI chips’ cost efficiency for a while as the low-hanging fruit is picked.
My point was something like, “Development costs to make AI chips will largely be borne by leading AI companies. If this is right, then they won’t be able to take advantage of cheaper, better chips in the same way that consumers have with Moore’s Law—i.e. passively benefiting from the results without investing their own capital into R&D”. I didn’t mean for it to sound like I was focusing on chip production capacity—I think cost efficiency is the key metric.
But I don’t have a sense of how much money will be spent on development costs for a certain increase in chips’ cost efficiency. It might be that early on, unit costs swamp development costs.
Frankly, I’m starting to think that my ideas about development costs may not be accurate. It looks like traditional chip companies are entering the AI chip business in force, although they could be 10% of the market or 90% for all I know. That could change things from the perspective of how much compute leading AI firms could afford to buy. This coupled with the aforementioned difference in cost efficiency rates between general chips and AI chips means I may have underestimated future increases in the cost efficiency of AI chips.