Could you clarify the argument you are making? I agree the 5th percentile past cost-effectiveness of HSI is 0 given this is RP’s 5th percentile welfare range of shrimps. However, I think what matters is the expected cost-effectiveness. Are you suggesting one should disregard interventions whose 5th percentile cost-effectiveness is 0? Imagine one could pay 1 k$ to save 0 lives with 10 % probability, and 1 life with 90 % probability. The 5th percentile cost-effectiveness is 0 (the 5th percentile cost-effectiveness of deworming programs could also be super low?), but the expected cost-effectiveness is 0.9 life/k$, i.e. around 4.5 times the cost-effectiveness of GiveWell’s top charities of 0.2 life/k$ (= 1/(5*10^3)).
Could you clarify the argument you are making? I agree the 5th percentile past cost-effectiveness of HSI is 0 given this is RP’s 5th percentile welfare range of shrimps. However, I think what matters is the expected cost-effectiveness. Are you suggesting one should disregard interventions whose 5th percentile cost-effectiveness is 0? Imagine one could pay 1 k$ to save 0 lives with 10 % probability, and 1 life with 90 % probability. The 5th percentile cost-effectiveness is 0 (the 5th percentile cost-effectiveness of deworming programs could also be super low?), but the expected cost-effectiveness is 0.9 life/k$, i.e. around 4.5 times the cost-effectiveness of GiveWell’s top charities of 0.2 life/k$ (= 1/(5*10^3)).