Actually, the difference between the mean and median is much smaller than I expected. For 1/N = 221 M / 86 G = 0.00256 (ratio between the number of neurons of a red junglefowl and human taken from here), the mean and median of a distribution whose 1st and 99th percentiles are 1/N and 1 are:
Lognormal distribution (“very concentrated”): 0.1 and 0.05, i.e. the mean is only 2 times as large as the median.
Loguniform (“not concentrated”): 0.2 and 0.05, i.e. the mean is only 3 times as large as the median.
The mean moral weight of poultry birds relative to humans of 2 I estimated here is 10 times as large as the one respecting the loguniform distribution just above. This makes me think 2 is not an unreasonably high estimate, especially having in mind that there are factors such as clock speed of consciousness which might increase the moral weight of poultry birds relative to humans, instead of decreasing it as the number of neurons.
That makes sense.
Actually, the difference between the mean and median is much smaller than I expected. For 1/N = 221 M / 86 G = 0.00256 (ratio between the number of neurons of a red junglefowl and human taken from here), the mean and median of a distribution whose 1st and 99th percentiles are 1/N and 1 are:
Lognormal distribution (“very concentrated”): 0.1 and 0.05, i.e. the mean is only 2 times as large as the median.
Loguniform (“not concentrated”): 0.2 and 0.05, i.e. the mean is only 3 times as large as the median.
The mean moral weight of poultry birds relative to humans of 2 I estimated here is 10 times as large as the one respecting the loguniform distribution just above. This makes me think 2 is not an unreasonably high estimate, especially having in mind that there are factors such as clock speed of consciousness which might increase the moral weight of poultry birds relative to humans, instead of decreasing it as the number of neurons.