So they include the prefrontal cortex, too, for second order appraisals. They also point to (the posterior sector of) ACC area 24, specifically, in the text.
Micheal, the link between specific brain regions and encoding pain affect is pretty complicated and controversial, as mentioned in the original article. So I would first note that even if we don’t know exactly what specific brain regions are doing, there’s still a lot of evidence (including several lines of evidence cited in the Price article you mention) for a sensory/affective dissociation.
That said, the brain regions most commonly linked to the affective dimension of pain are the anterior cingulate cortex (with some controversy as to whether the relevant region should be referred to as part of the midcingulate rather than the ACC), and the insula cortex (possibly along with the neighboring parietal operculum). But there was also a really impressively thorough recent study by Corder et a that seemed to show that the basolateral amygdala plays a central role in the unpleasantness of pain: https://science.sciencemag.org/content/363/6424/276 .
One difficulty with all of these regions is that they’re involved in many different cognitive processes, so it’s hard to suss out exactly what role is being played in pain. Part of what was especially cool about the Corder study was that it drilled down to specific neural ensembles within the amgdala that really did seem to play a pain-specific role. Similarly, more fine-grained examinations of the cingulate have helped to clarify which regions are involved in pain vs other processes: https://www.sciencedirect.com/science/article/abs/pii/S0891061815300326 and see also: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5801068/ ). The most detailed argument for a central role of the insula in pain affect is Grahek’s book Feeling Pain and Being in Pain, which is a bit dated now, but there’s still a lot of emphasis on the insula as a key area for pain’s unpleasantness. In humans, there’s evidence that lesions to the cingulate and insula can selectively impair pain affect while preserving pain sensation, direct stimulation of the insula can cause expressions of pain, and deep brain stimulation on the cingulate has selectively lessened the affective component of chronic pain in early studies.
So I guess the tl/dr is that the regions most likely to play a central role in pain affect are the anterior midcingulate cortex (which is the region Price referred to as the posterior ACC), the posterior insula and parietal operculum, and (specific neuronal ensambles in) the basolateral amygdala, but there are also a lot of really big questions remaining.
Hi Adam, where are the right places to look for the affective component? I see the anterior cingulate cortex (ACC) discussed in a few places, e.g. its relationship with pain on wiki page for the ACC. They cite Price, D. D. (2000). Psychological and neural mechanisms of the affective dimension of pain. Science, 288(5472), 1769-1772, and that article includes this figure for the neural pathway of pain:
So they include the prefrontal cortex, too, for second order appraisals. They also point to (the posterior sector of) ACC area 24, specifically, in the text.
It seems the ACC is involved in both social rejection and physical pain in humans, and emotional contagion in mice (and spike counts in area 24 were correlated with intensity), too.
Are there more specific regions or other regions we should look to that you’re aware of?
Micheal, the link between specific brain regions and encoding pain affect is pretty complicated and controversial, as mentioned in the original article. So I would first note that even if we don’t know exactly what specific brain regions are doing, there’s still a lot of evidence (including several lines of evidence cited in the Price article you mention) for a sensory/affective dissociation.
That said, the brain regions most commonly linked to the affective dimension of pain are the anterior cingulate cortex (with some controversy as to whether the relevant region should be referred to as part of the midcingulate rather than the ACC), and the insula cortex (possibly along with the neighboring parietal operculum). But there was also a really impressively thorough recent study by Corder et a that seemed to show that the basolateral amygdala plays a central role in the unpleasantness of pain: https://science.sciencemag.org/content/363/6424/276 .
One difficulty with all of these regions is that they’re involved in many different cognitive processes, so it’s hard to suss out exactly what role is being played in pain. Part of what was especially cool about the Corder study was that it drilled down to specific neural ensembles within the amgdala that really did seem to play a pain-specific role. Similarly, more fine-grained examinations of the cingulate have helped to clarify which regions are involved in pain vs other processes: https://www.sciencedirect.com/science/article/abs/pii/S0891061815300326 and see also: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5801068/ ). The most detailed argument for a central role of the insula in pain affect is Grahek’s book Feeling Pain and Being in Pain, which is a bit dated now, but there’s still a lot of emphasis on the insula as a key area for pain’s unpleasantness. In humans, there’s evidence that lesions to the cingulate and insula can selectively impair pain affect while preserving pain sensation, direct stimulation of the insula can cause expressions of pain, and deep brain stimulation on the cingulate has selectively lessened the affective component of chronic pain in early studies.
So I guess the tl/dr is that the regions most likely to play a central role in pain affect are the anterior midcingulate cortex (which is the region Price referred to as the posterior ACC), the posterior insula and parietal operculum, and (specific neuronal ensambles in) the basolateral amygdala, but there are also a lot of really big questions remaining.