I think Parfit’s Hitchhiker poses a similar problem for everyone, though.
You’re outside town and hitchhiking with your debit card but no cash, and a driver offers to drive you if you pay him when you get to town. The driver can also tell if you’ll pay (he’s good at reading people), and will refuse to drive if he predicts that you won’t. Assuming you’d rather keep your money than pay conditional on getting into town, it would be irrational to pay then (you wouldn’t be following your own preferences). So, you predict that you won’t pay. And then the driver refuses to drive you, and you lose.
So, the thing to do here is to somehow commit to paying and actually pay, despite it violating your later preference to not pay when you get into town.
And we might respond the same way for A vs B-$100 in the money pump in the post: just commit to sticking with A (at least for high enough value outcomes) and actually do it, even though you know you’ll regret it when you find out the value of A.
So maybe (some) money pump arguments prove too much? Still, it seems better to avoid having these dilemmas when you can, and unbounded utility functions face more of them.
On the other hand, you can change your preferences so that you actually prefer to pay when you get into town. Doing the same for the post’s money pump would mean actually not preferring B-$100 over some finite outcome of A. If you do this in response to all possible money pumps, you’ll end up with a bounded utility function (possibly lexicographic, possibly multi-utility representation). Or, this could be extremely situation-specific preferences. You don’t have to prefer to pay drivers all the time, just in Parfit’s Hitchhiker situations. In general, you can just have preferences specific to every decision situation to avoid money pumps. This violates the Independence of Irrelevant Alternatives, at least in spirit.
I think Parfit’s Hitchhiker poses a similar problem for everyone, though.
You’re outside town and hitchhiking with your debit card but no cash, and a driver offers to drive you if you pay him when you get to town. The driver can also tell if you’ll pay (he’s good at reading people), and will refuse to drive if he predicts that you won’t. Assuming you’d rather keep your money than pay conditional on getting into town, it would be irrational to pay then (you wouldn’t be following your own preferences). So, you predict that you won’t pay. And then the driver refuses to drive you, and you lose.
So, the thing to do here is to somehow commit to paying and actually pay, despite it violating your later preference to not pay when you get into town.
And we might respond the same way for A vs B-$100 in the money pump in the post: just commit to sticking with A (at least for high enough value outcomes) and actually do it, even though you know you’ll regret it when you find out the value of A.
So maybe (some) money pump arguments prove too much? Still, it seems better to avoid having these dilemmas when you can, and unbounded utility functions face more of them.
On the other hand, you can change your preferences so that you actually prefer to pay when you get into town. Doing the same for the post’s money pump would mean actually not preferring B-$100 over some finite outcome of A. If you do this in response to all possible money pumps, you’ll end up with a bounded utility function (possibly lexicographic, possibly multi-utility representation). Or, this could be extremely situation-specific preferences. You don’t have to prefer to pay drivers all the time, just in Parfit’s Hitchhiker situations. In general, you can just have preferences specific to every decision situation to avoid money pumps. This violates the Independence of Irrelevant Alternatives, at least in spirit.
See also https://www.lesswrong.com/tag/parfits-hitchhiker