For qPCR or other targeted detection approaches wastewater has quickly become a very common sample type, mostly because (a) it was very successful for covid, (b) a single sample covers hundreds of thousands of people, and (c) it’s an ‘environmental’ sample so it’s easy to get started (no IRB etc). And targeted detection is generally sensitive enough that the low concentrations are surmountable.
There isn’t really a status quo for metagenomic monitoring: everything is currently in its early stages. There are academics collecting a range of samples and metagenomically sequencing them, but these don’t feed into public health tracking, partly because they’re not running their sequencing or analysis in a way that would give the low sample-to-results times you’d need from a real-time monitoring system.
What’s your theory for why the status quo tends to be wastewater?
For qPCR or other targeted detection approaches wastewater has quickly become a very common sample type, mostly because (a) it was very successful for covid, (b) a single sample covers hundreds of thousands of people, and (c) it’s an ‘environmental’ sample so it’s easy to get started (no IRB etc). And targeted detection is generally sensitive enough that the low concentrations are surmountable.
There isn’t really a status quo for metagenomic monitoring: everything is currently in its early stages. There are academics collecting a range of samples and metagenomically sequencing them, but these don’t feed into public health tracking, partly because they’re not running their sequencing or analysis in a way that would give the low sample-to-results times you’d need from a real-time monitoring system.