Thanks! I’ll answer your cluster of questions about takeoff speeds and commercialization in this comment and leave another comment respond to your questions about sharing my report outside the EA community.
Broadly speaking, I do expect that transformative AI will be foreshadowed by incremental economic gains; I generally expect gradual takeoff , meaning I would bet that at some point growth will be ~10% per year before it hits 30% per year (which was the arbitrary cut-off for “transformative” used in my report). I don’t think it’s necessarily the case; I just think it’ll probably work this way. On the outside view, that’s how most technologies seem to have worked. And on the inside view, it seems like there are lots of valuable-but-not-transformative applications of existing models on the horizon, and industry giants + startups are already on the move trying to capitalize.
My views imply a roughly ~10% probability that the compute to train transformative AI would be affordable in 10 years or less, which wouldn’t really leave time for this kind of gradual takeoff. One reason it’s a pretty low number is because it would imply sudden takeoff and I’m skeptical of that implication (though it’s not the only reason—I think there are separate reasons to be skeptical of the Lifetime Anchor and the Short Horizon Neural Network anchor, which drive short timelines in my model).
I don’t expect that several generations of more powerful successors to GPT-3 will be developed before we see significant commercial applications to GPT-3; I expect commercialization of existing models and scaleup to larger models to be happening in parallel. There are already various applications online, e.g. AI Dungeon (based on GPT-3), TabNine (based on GPT-2), and this list of other apps. I don’t think that evidence OpenAI was productizing GPT-3 would shift my timelines much either way, since I already expect them to be investing pretty heavily in this.
Relative to the present, I expect the machine learning industry to invest a larger share of its resources going forward into commercialization, as opposed to pure R&D: before this point a lot of the models studied in an R&D setting just weren’t very useful (with the major exception of vision models underlying self-driving cars), and now they’re starting to be pretty useful. But at least over the next 5-10 years I don’t think that would slow down scaling / R&D much in an absolute sense, since the industry as a whole will probably grow, and there will be more resources for both scaling R&D and commercialization.
Thanks! I’ll answer your cluster of questions about takeoff speeds and commercialization in this comment and leave another comment respond to your questions about sharing my report outside the EA community.
Broadly speaking, I do expect that transformative AI will be foreshadowed by incremental economic gains; I generally expect gradual takeoff , meaning I would bet that at some point growth will be ~10% per year before it hits 30% per year (which was the arbitrary cut-off for “transformative” used in my report). I don’t think it’s necessarily the case; I just think it’ll probably work this way. On the outside view, that’s how most technologies seem to have worked. And on the inside view, it seems like there are lots of valuable-but-not-transformative applications of existing models on the horizon, and industry giants + startups are already on the move trying to capitalize.
My views imply a roughly ~10% probability that the compute to train transformative AI would be affordable in 10 years or less, which wouldn’t really leave time for this kind of gradual takeoff. One reason it’s a pretty low number is because it would imply sudden takeoff and I’m skeptical of that implication (though it’s not the only reason—I think there are separate reasons to be skeptical of the Lifetime Anchor and the Short Horizon Neural Network anchor, which drive short timelines in my model).
I don’t expect that several generations of more powerful successors to GPT-3 will be developed before we see significant commercial applications to GPT-3; I expect commercialization of existing models and scaleup to larger models to be happening in parallel. There are already various applications online, e.g. AI Dungeon (based on GPT-3), TabNine (based on GPT-2), and this list of other apps. I don’t think that evidence OpenAI was productizing GPT-3 would shift my timelines much either way, since I already expect them to be investing pretty heavily in this.
Relative to the present, I expect the machine learning industry to invest a larger share of its resources going forward into commercialization, as opposed to pure R&D: before this point a lot of the models studied in an R&D setting just weren’t very useful (with the major exception of vision models underlying self-driving cars), and now they’re starting to be pretty useful. But at least over the next 5-10 years I don’t think that would slow down scaling / R&D much in an absolute sense, since the industry as a whole will probably grow, and there will be more resources for both scaling R&D and commercialization.