The big issue with dragging our feet on space is more to do with astronomical waste than x-risk in my opinion.
In that case you should invest directly in base technologies. The private sector will find the most profitable uses for them, and usually there are more profitable applications for technology than space. Everyone loves to talk about all the new technologies which came out of the U.S. space program, but imagine how much more we would have gotten had we invested the same amount of money directly into medical technology, material science, and orange-flavored powdered drink mix.
Every day we wait to build the first self replicating robotic space factory is another huge loss in terms of expected utility from economic growth.
The technologies required for that are various things which are beyond our current abilities. We can’t even do self replication on Earth. We may as well start with the fundamental nanoengineering and artificial intelligence domains. We don’t know how space tech and missions will evolve, so if we try to make applied technology for current missions then much of the effort will be poorly targeted and less useful. It’s already clear that more serious basic problems in materials science, AI and other domains must be overcome for space exploration to provide positive returns, and those are the fields which both the private sector and the government are less interested in supporting (due to long term horizons and riskiness of profits for the private sector, and lack of politically sellable ‘results’ for the government).
In that case you should invest directly in base technologies. The private sector will find the most profitable uses for them, and usually there are more profitable applications for technology than space. Everyone loves to talk about all the new technologies which came out of the U.S. space program, but imagine how much more we would have gotten had we invested the same amount of money directly into medical technology, material science, and orange-flavored powdered drink mix.
I’m with you on spinoffs argument, however we’re concerned with technologies of specific usefulness in space to tap space resources. What is the profitable application of a zero gravity refinery for turning heterogeneous rocks into aluminum? Assume the process is (at the small scale) around 5% as energy efficient as electrolyzing bauxite and requires a high vacuum. Chances are such a thing could be worth something in a world without cheaper ways to get aluminum, assuming you could work around the gravity difference. Not so much in a world with abundant bauxite, gravity, and an atmosphere. So there is little incentive to develop in that direction unless you are actually planning to use it in space, where it would be highly useful (because aluminum is so useful in the service of energy collection in space that 5% energy efficiency actually wouldn’t slow growth by much).
The technologies required for that are various things which are beyond our current abilities. We can’t even do self replication on Earth. We may as well start with the fundamental nanoengineering and artificial intelligence domains. We don’t know how space tech and missions will evolve, so if we try to make applied technology for current missions then much of the effort will be poorly targeted and less useful. It’s already clear that more serious basic problems in materials science, AI and other domains must be overcome for space exploration to provide positive returns, and those are the fields which both the private sector and the government are less interested in supporting (due to long term horizons and riskiness of profits for the private sector, and lack of politically sellable ‘results’ for the government).
We actually do facilitate the replication of machinery, with the aid of human labor. An orbital factory wouldn’t have much time delay compared to the human nervous system, so the minimal requirement for a fully self replicating space swarm seems to be telerobotics sufficiently good to mimic the human hand well enough to perform maintenance and assembly tasks. No new advances in nanoengineering or artificial intelligence are needed. However, until such a system replicates itself adequately to return results, it would be a monetary sink rather than a source of profit. It would become profitable at some point, because the cheap on site energy, ready made vacuum, zero gravity, absence of atmosphere/weather, reduction of rent/crowding issues due to 3d construction, enhanced transport logistics between factories due to vacuum/zero gravity, etc, would all contribute to making it more efficient.
In that case you should invest directly in base technologies. The private sector will find the most profitable uses for them, and usually there are more profitable applications for technology than space. Everyone loves to talk about all the new technologies which came out of the U.S. space program, but imagine how much more we would have gotten had we invested the same amount of money directly into medical technology, material science, and orange-flavored powdered drink mix.
The technologies required for that are various things which are beyond our current abilities. We can’t even do self replication on Earth. We may as well start with the fundamental nanoengineering and artificial intelligence domains. We don’t know how space tech and missions will evolve, so if we try to make applied technology for current missions then much of the effort will be poorly targeted and less useful. It’s already clear that more serious basic problems in materials science, AI and other domains must be overcome for space exploration to provide positive returns, and those are the fields which both the private sector and the government are less interested in supporting (due to long term horizons and riskiness of profits for the private sector, and lack of politically sellable ‘results’ for the government).
I’m with you on spinoffs argument, however we’re concerned with technologies of specific usefulness in space to tap space resources. What is the profitable application of a zero gravity refinery for turning heterogeneous rocks into aluminum? Assume the process is (at the small scale) around 5% as energy efficient as electrolyzing bauxite and requires a high vacuum. Chances are such a thing could be worth something in a world without cheaper ways to get aluminum, assuming you could work around the gravity difference. Not so much in a world with abundant bauxite, gravity, and an atmosphere. So there is little incentive to develop in that direction unless you are actually planning to use it in space, where it would be highly useful (because aluminum is so useful in the service of energy collection in space that 5% energy efficiency actually wouldn’t slow growth by much).
We actually do facilitate the replication of machinery, with the aid of human labor. An orbital factory wouldn’t have much time delay compared to the human nervous system, so the minimal requirement for a fully self replicating space swarm seems to be telerobotics sufficiently good to mimic the human hand well enough to perform maintenance and assembly tasks. No new advances in nanoengineering or artificial intelligence are needed. However, until such a system replicates itself adequately to return results, it would be a monetary sink rather than a source of profit. It would become profitable at some point, because the cheap on site energy, ready made vacuum, zero gravity, absence of atmosphere/weather, reduction of rent/crowding issues due to 3d construction, enhanced transport logistics between factories due to vacuum/zero gravity, etc, would all contribute to making it more efficient.