Great read, thanks for posting! A quick heads up that many of the links in the table of contents are broken (either linking to start of post, or to non-existent websites).
Summary of this post, and the sequel post Technological Bottlenecks for PCR, LAMP, and Metagenomics Sequencing (feel free to suggest edits!) Biosurveillance systems help early identification of pathogens that could cause pandemics. The authors weighted existing methods on 10 criteria including usefulness, quality of evidence, feasibility and potential risks.
High scoring methods included: Point-of-person (non-lab tests eg. rapid antigen), clinical (lab tests eg. PCR), digital (reporting cases to a database), and environmental methods (eg. monitoring in wastewater). Technological developments in point-of-person and clinical surveillance (ie. faster, easier, cheaper, home-based tests) is seen as promising. Environmental surveillance would benefit from increasing sensitivity of wastewater testing equipment, and developing new concentration techniques that work for a wide variety of pathogens (bacteria, virus, fungi). Specific bottlenecks and potential solutions (eg. improving performance of LAMP, a cheaper PCR alternative, under cold temperatures) are discussed in the second post.
Slightly lower scoring methods were: animal (frequent sampling and wearable devices) and syndromic (monitoring symptoms). Data sharing between key parties (and preferably cross-country) could assist with syndromic and digital methods. Animal monitoring is less promising as, while 60% of known infectious diseases are zoonotic, we lack the capability to predict virulence and transmissibility to humans.
(If you’d like to see more summaries of top EA and LW forum posts, check out the Weekly Summaries series.)
Great read, thanks for posting! A quick heads up that many of the links in the table of contents are broken (either linking to start of post, or to non-existent websites).
Summary of this post, and the sequel post Technological Bottlenecks for PCR, LAMP, and Metagenomics Sequencing (feel free to suggest edits!)
Biosurveillance systems help early identification of pathogens that could cause pandemics. The authors weighted existing methods on 10 criteria including usefulness, quality of evidence, feasibility and potential risks.
High scoring methods included: Point-of-person (non-lab tests eg. rapid antigen), clinical (lab tests eg. PCR), digital (reporting cases to a database), and environmental methods (eg. monitoring in wastewater). Technological developments in point-of-person and clinical surveillance (ie. faster, easier, cheaper, home-based tests) is seen as promising. Environmental surveillance would benefit from increasing sensitivity of wastewater testing equipment, and developing new concentration techniques that work for a wide variety of pathogens (bacteria, virus, fungi). Specific bottlenecks and potential solutions (eg. improving performance of LAMP, a cheaper PCR alternative, under cold temperatures) are discussed in the second post.
Slightly lower scoring methods were: animal (frequent sampling and wearable devices) and syndromic (monitoring symptoms). Data sharing between key parties (and preferably cross-country) could assist with syndromic and digital methods. Animal monitoring is less promising as, while 60% of known infectious diseases are zoonotic, we lack the capability to predict virulence and transmissibility to humans.
(If you’d like to see more summaries of top EA and LW forum posts, check out the Weekly Summaries series.)