I haven’t read the articles yet, though I did study climate change as part of my undergraduate and externally, so I’ll have a crack at answering your technical question (Q3).
The point of mitigation is to reduce greenhouse gas emissions (including carbon dioxide and methane) or to capture and store them (number of ways to do this, underground gas to liquid storage, growing trees etc.). CO2 actually has a much shorter residence time in the atmosphere, but it does then get stored in the ocean for up to centuries. Methane is also a big problem, because it has a larger impact on warming (around 20 times greater), but has a shorter residence time (around 8 years in the atmosphere). For this reason, some people propose that mitigation, at least in the short term, should focus on reducing methane gas, as it has a larger short term effect, and if we hypothetically cut methane to zero (not going to happen as there are still natural sources, but for arguments sake), we would see the impact of methane disappear quite quickly, compared to cutting carbon.
To answer the rest of your question, the fact that carbon is transferred from the atmosphere to the oceans, soil and organic matter over time means that there is some particular amount of greenhouse gas (GHG) that can be put in the atmosphere without warming, as the Earth as a whole can absorb it (assuming no man-made carbon capture). This point is called the equilibrium state. We have well and truly exceeded the equilibrium point through man-made emissions, which is why the planet is warming. If we could reduce emissions to the equilibrium emission rate and below that, the planet would, eventually, start to cool. Even if we expect we will only get below equilibrium in 100 years, any reduction in emissions now will mean the atmosphere will have warmed less by the time we get there.
I haven’t read the articles yet, though I did study climate change as part of my undergraduate and externally, so I’ll have a crack at answering your technical question (Q3).
The point of mitigation is to reduce greenhouse gas emissions (including carbon dioxide and methane) or to capture and store them (number of ways to do this, underground gas to liquid storage, growing trees etc.). CO2 actually has a much shorter residence time in the atmosphere, but it does then get stored in the ocean for up to centuries. Methane is also a big problem, because it has a larger impact on warming (around 20 times greater), but has a shorter residence time (around 8 years in the atmosphere). For this reason, some people propose that mitigation, at least in the short term, should focus on reducing methane gas, as it has a larger short term effect, and if we hypothetically cut methane to zero (not going to happen as there are still natural sources, but for arguments sake), we would see the impact of methane disappear quite quickly, compared to cutting carbon.
To answer the rest of your question, the fact that carbon is transferred from the atmosphere to the oceans, soil and organic matter over time means that there is some particular amount of greenhouse gas (GHG) that can be put in the atmosphere without warming, as the Earth as a whole can absorb it (assuming no man-made carbon capture). This point is called the equilibrium state. We have well and truly exceeded the equilibrium point through man-made emissions, which is why the planet is warming. If we could reduce emissions to the equilibrium emission rate and below that, the planet would, eventually, start to cool. Even if we expect we will only get below equilibrium in 100 years, any reduction in emissions now will mean the atmosphere will have warmed less by the time we get there.