I’m a fan of lengthy asynchronous intellectual exchanges like this one, so no need to apologize for the delay. I hope you don’t mind my delay either? As usual, no need to reply to this message.
If we condition on not having extreme capabilities for persuasion or research/engineering, I’m quite skeptical that something in the “business/military/political strategy” category is a great candidate to have transformative impact on its own.
I think I agree with this.
Re: quantification: I agree; currently I don’t have good metrics to forecast on, much less good forecasts, for persuasion stuff and AI-PONR stuff. I am working on fixing that problem. :)
Re persuasion: For the past two years I have agreed with the claims made in “The misinformation problem seems like misinformation.”(!!!) The problem isn’t lack of access to information; information is more available than it ever was before. Nor is the problem “fake news” or other falsehoods. (Most propaganda is true.) Being politically polarized and extremist correlates positively with being well-informed, not negatively! (Anecdotally, my grad school friends with the craziest/most-extreme/most-dangerous/least-epistemically-virtuous political beliefs were generally the people best informed about politics. Analogous to how 9/11 truthers will probably know a lot more about 9/11 than you or me.) This is indeed an epistemic golden age… for people who are able to resist the temptations of various filter bubbles and the propaganda of various ideologies. (And everyone thinks themself one such person, so everyone thinks this is an epistemic golden age for them.)
I do disagree with your claim that this is currently an epistemic golden age. I think it’s important to distinguish between ways in which it is and isn’t. I mentioned above a way that it is.
If we made a chart of some number capturing “how easy it is to convince key parts of society to recognize and navigate a tricky novel problem” … since the dawn of civilization, what would that chart look like? My guess is that it would be pretty chaotic; that it would sometimes go quite low and sometimes go quite high
Agreed. I argued this, in fact.
and that it would be very hard to predict the impact of a given technology or other development on epistemic responsiveness.
Disagree. I mean, I don’t know, maybe this is true. But I feel like we shouldn’t just throw our hands up in the air here, we haven’t even tried! I’ve sketched an argument for why we should expect epistemic responsiveness to decrease in the near future (propaganda and censorship are bad for epistemic responsiveness & they are getting a lot cheaper and more effective & no pro-epistemic-responsiveness-force seems to be rising to counter it)
Maybe there have been one-off points in history when epistemic responsiveness was very high; maybe it is much lower today compared to peak, such that someone could already claim we have passed the “point of no return”; maybe “persuasion AI” will drive it lower or higher, depending partly on who you think will have access to the biggest and best persuasion AIs and how they will use them.
Agreed. I argued this, in fact. (Note: “point of no return” is a relative notion; it may be that relative to us in 2010 the point of no return was e.g. the founding of OpenAI, and nevertheless relative to us now the point of no return is still years in the future.)
So I think even if we grant a lot of your views about how much AI could change the “memetic environment,” it’s not clear how this relates to the “point of no return.”
The conclusion I built was “We should direct more research effort at understanding and forecasting this stuff because it seems important.” I think that conclusion is supported by the above claims about the possible effects of persuasion tools.
What has/had higher ex ante probability of leading to a dramatic change in the memetic environment: further development of AI language models that could be used to write more propaganda, or the recent (last 20 years) explosion in communication channels and data, or many other changes over the last few hundred years such as the advent of radio and television, or the change in business models for media that we’re living through now? This comparison is intended to be an argument both that “your kind of reasoning would’ve led us to expect many previous persuasion-related PONRs without needing special AI advances” and that “if we condition on persuasion-related PONRs being the big thing to think about, we shouldn’t necessarily be all that focused on AI.”
Good argument. To hazard a guess: 1. Explosion in communication channels and data (i.e. the Internet + Big Data) 2. AI language models useful for propaganda and censorship 3. Advent of radio and television 4. Change in business models for media
However I’m pretty uncertain about this, I could easily see the order being different. Note that from what I’ve heard the advent of radio and television DID have a big effect on public epistemology; e.g. it partly enabled totalitarianism. Prior to that, the printing press is argued to have also had disruptive effects.
This is why I emphasized elsewhere that I’m not arguing for anything unprecedented. Public epistemology / epistemic responsiveness has waxed and waned over time and has occasionally gotten extremely bad (e.g. in totalitarian regimes and the freer societies that went totalitarian) and so we shouldn’t be surprised if it happens again and if someone has an argument that it might be about to happen again it should be taken seriously and investigated. (I’m not saying you yourself need to investigate this, you probably have better things to do.) Also I totally agree that we shouldn’t just be focused on AI; in fact I’d go further and say that most of the improvements in propaganda+censorship will come from non-AI stuff like Big Data. But AI will help too; it seems to make censorship a lot cheaper for example.
I’d be interested in seeing literature on how big an effect size you can get out of things like focus groups and A/B testing. My guess is that going from completely incompetent at persuasion (e.g., basically modeling your audience as yourself, which is where most people start) to “empirically understanding and incorporating your audience’s different-from-you characteristics” causes a big jump from a very low level of effectiveness, but that things flatten out quickly after that, and that pouring more effort into focus groups and testing leads to only moderate effects, such that “doubling effectiveness” on the margin shouldn’t be a very impressive/scary idea.
I think most media is optimizing for engagement rather than persuasion, and that it’s natural for things to continue this way as AI advances. Engagement is dramatically easier to measure than persuasion, so data-hungry AI should help more with engagement than persuasion; targeting engagement is in some sense “self-reinforcing” and “self-funding” in a way that targeting persuasion isn’t (so persuasion targeters need some sort of subsidy to compete with engagement targeters); and there are norms against targeting persuasion as well. I do expect some people and institutions to invest a lot in persuasion targeting (as they do today), but my modal expectation does not involve it becoming pervasive on nearly all websites, the way yours seems to.
I feel like a lot of today’s “persuasion” is either (a) extremely immersive (someone is raised in a social setting that is very committed to some set of views or practices); or (b) involves persuading previously-close-to-indifferent people to believe things that call for low-cost actions (in many cases this means voting and social media posting; in some cases it can mean more consequential, but still ultimately not-super-high-personal-cost, actions). (b) can lead over time to shifting coalitions and identities, but the transition from (b) to (a) seems long.
I particularly don’t feel that today’s “persuaders” have much ability to accomplish the things that you’re pointing to with “chatbots,” “coaches,” “Imperius curses” and “drugs.” (Are there cases of drugs being used to systematically cause people to make durable, sustained, action-relevant changes to their views, especially when not accompanied by broader social immersion?)
These are all good points. This is exactly the sort of thing I wish there was more research into, and that I’m considering doing more research on myself.
Re: pervasiveness on almost all websites: Currently propaganda and censorship both seem pretty widespread and also seem to be on a trend of becoming more so. (The list of things that get censored is growing, not shrinking, for example.) This is despite the fact that censorship is costly and so theoretically platforms that do it should be outcompeted by platforms that just maximize engagement. Also, IIRC facebook uses large language models to do the censoring more efficiently and cheaply, and I assume the other companies do too. As far as I know they aren’t measuring user opinions and directly using that as a feedback signal, thank goodness, but… is it that much of a stretch to think that they might? It’s only been two years since GPT-3.
I’m a fan of lengthy asynchronous intellectual exchanges like this one, so no need to apologize for the delay. I hope you don’t mind my delay either? As usual, no need to reply to this message.
I think I agree with this.
Re: quantification: I agree; currently I don’t have good metrics to forecast on, much less good forecasts, for persuasion stuff and AI-PONR stuff. I am working on fixing that problem. :)
Re persuasion: For the past two years I have agreed with the claims made in “The misinformation problem seems like misinformation.”(!!!) The problem isn’t lack of access to information; information is more available than it ever was before. Nor is the problem “fake news” or other falsehoods. (Most propaganda is true.) Being politically polarized and extremist correlates positively with being well-informed, not negatively! (Anecdotally, my grad school friends with the craziest/most-extreme/most-dangerous/least-epistemically-virtuous political beliefs were generally the people best informed about politics. Analogous to how 9/11 truthers will probably know a lot more about 9/11 than you or me.) This is indeed an epistemic golden age… for people who are able to resist the temptations of various filter bubbles and the propaganda of various ideologies. (And everyone thinks themself one such person, so everyone thinks this is an epistemic golden age for them.)
I do disagree with your claim that this is currently an epistemic golden age. I think it’s important to distinguish between ways in which it is and isn’t. I mentioned above a way that it is.
Agreed. I argued this, in fact.
Disagree. I mean, I don’t know, maybe this is true. But I feel like we shouldn’t just throw our hands up in the air here, we haven’t even tried! I’ve sketched an argument for why we should expect epistemic responsiveness to decrease in the near future (propaganda and censorship are bad for epistemic responsiveness & they are getting a lot cheaper and more effective & no pro-epistemic-responsiveness-force seems to be rising to counter it)
Agreed. I argued this, in fact. (Note: “point of no return” is a relative notion; it may be that relative to us in 2010 the point of no return was e.g. the founding of OpenAI, and nevertheless relative to us now the point of no return is still years in the future.)
The conclusion I built was “We should direct more research effort at understanding and forecasting this stuff because it seems important.” I think that conclusion is supported by the above claims about the possible effects of persuasion tools.
Good argument. To hazard a guess:
1. Explosion in communication channels and data (i.e. the Internet + Big Data)
2. AI language models useful for propaganda and censorship
3. Advent of radio and television
4. Change in business models for media
However I’m pretty uncertain about this, I could easily see the order being different. Note that from what I’ve heard the advent of radio and television DID have a big effect on public epistemology; e.g. it partly enabled totalitarianism. Prior to that, the printing press is argued to have also had disruptive effects.
This is why I emphasized elsewhere that I’m not arguing for anything unprecedented. Public epistemology / epistemic responsiveness has waxed and waned over time and has occasionally gotten extremely bad (e.g. in totalitarian regimes and the freer societies that went totalitarian) and so we shouldn’t be surprised if it happens again and if someone has an argument that it might be about to happen again it should be taken seriously and investigated. (I’m not saying you yourself need to investigate this, you probably have better things to do.) Also I totally agree that we shouldn’t just be focused on AI; in fact I’d go further and say that most of the improvements in propaganda+censorship will come from non-AI stuff like Big Data. But AI will help too; it seems to make censorship a lot cheaper for example.
I’d be interested in seeing literature on how big an effect size you can get out of things like focus groups and A/B testing. My guess is that going from completely incompetent at persuasion (e.g., basically modeling your audience as yourself, which is where most people start) to “empirically understanding and incorporating your audience’s different-from-you characteristics” causes a big jump from a very low level of effectiveness, but that things flatten out quickly after that, and that pouring more effort into focus groups and testing leads to only moderate effects, such that “doubling effectiveness” on the margin shouldn’t be a very impressive/scary idea.
These are all good points. This is exactly the sort of thing I wish there was more research into, and that I’m considering doing more research on myself.
Re: pervasiveness on almost all websites: Currently propaganda and censorship both seem pretty widespread and also seem to be on a trend of becoming more so. (The list of things that get censored is growing, not shrinking, for example.) This is despite the fact that censorship is costly and so theoretically platforms that do it should be outcompeted by platforms that just maximize engagement. Also, IIRC facebook uses large language models to do the censoring more efficiently and cheaply, and I assume the other companies do too. As far as I know they aren’t measuring user opinions and directly using that as a feedback signal, thank goodness, but… is it that much of a stretch to think that they might? It’s only been two years since GPT-3.