I don’t think the pernicious mitigation obstruction argument is sound. It would be equally plausible for just about any other method of addressing air pollution. For instance, if we develop better solar power, that will reduce the incentive for countries and other actors to work harder at implementing wind power, carbon capture, carbon taxes, tree planting, and geoengineering. All climate solutions substitute for each other to the extent that they are perceived as effective. But we can’t reject all climate solutions for fear that they will discourage other climate solutions, that would be absurd. Clearly, this mitigation obstruction effect is generally smaller than the benefits of actually reducing emissions.
The pernicious mitigation obstruction argument could make more sense if countries only care about certain consequences of pollution. Specifically, if countries care about protecting the climate but don’t care about protecting public health and crops from air pollution, then geoengineering would give them an option to mitigate one problem while comfortably doing nothing to stop the other, whereas if they have to properly decarbonize then they would end up fixing both problems. However, if anything the reverse is true. To the extent that the politics of climate change mitigation are hampered by the global coordination problem (which is dubious), and to the extent that the direct harms of air pollution are concentrated locally, countries will worry too little about the climate impacts while being more rational about direct pollution impacts. So geoengineering would mitigate the politically difficult problem (climate change) while still leaving countries with full incentives to fix the politically easy problem (direct harms of pollution), making it less of a mitigation obstruction risk than something like wind turbines.
Additionally, given the contentious side effects of geoengineering, the prospect of some actors doing it if climate change gets much worse may actually encourage other actors to do more to mitigate climate change using conventional methods. It’s still the case that researching or deploying geoengineering would reduce the amount of other types of mitigation, but it would do so to a lesser degree than that caused by comparable amounts of traditional mitigation.
Another note: I think if we had a better understanding of the consequences of solar geoengineering, then the security consequences of unilateral deployment would be mitigated. Disputes become less likely when both sides can agree on the relevant facts.
I don’t think the pernicious mitigation obstruction argument is sound. It would be equally plausible for just about any other method of addressing air pollution. For instance, if we develop better solar power, that will reduce the incentive for countries and other actors to work harder at implementing wind power, carbon capture, carbon taxes, tree planting, and geoengineering. All climate solutions substitute for each other to the extent that they are perceived as effective. But we can’t reject all climate solutions for fear that they will discourage other climate solutions, that would be absurd. Clearly, this mitigation obstruction effect is generally smaller than the benefits of actually reducing emissions.
The pernicious mitigation obstruction argument could make more sense if countries only care about certain consequences of pollution. Specifically, if countries care about protecting the climate but don’t care about protecting public health and crops from air pollution, then geoengineering would give them an option to mitigate one problem while comfortably doing nothing to stop the other, whereas if they have to properly decarbonize then they would end up fixing both problems. However, if anything the reverse is true. To the extent that the politics of climate change mitigation are hampered by the global coordination problem (which is dubious), and to the extent that the direct harms of air pollution are concentrated locally, countries will worry too little about the climate impacts while being more rational about direct pollution impacts. So geoengineering would mitigate the politically difficult problem (climate change) while still leaving countries with full incentives to fix the politically easy problem (direct harms of pollution), making it less of a mitigation obstruction risk than something like wind turbines.
Additionally, given the contentious side effects of geoengineering, the prospect of some actors doing it if climate change gets much worse may actually encourage other actors to do more to mitigate climate change using conventional methods. It’s still the case that researching or deploying geoengineering would reduce the amount of other types of mitigation, but it would do so to a lesser degree than that caused by comparable amounts of traditional mitigation.
Another note: I think if we had a better understanding of the consequences of solar geoengineering, then the security consequences of unilateral deployment would be mitigated. Disputes become less likely when both sides can agree on the relevant facts.