It seems to me there are two questions here:
(1) what are the average effects of different environments (e.g. wilderness; factory farm) on animal well-being?
(2) what is the average hedonic well-being of different species?
It feels like you’re attempting to find a method that will give the combined score for any given animal. But maybe it’d be best to focus on each individually. Some of the methods you mentioned (e.g. cortisol levels, behavior anomalies, self-narcotization) seem fairly solid for addressing (1), if you had more data. What’s the biggest hurdle to gathering more data? Can you think of any clever ways to gather lots of data cheaply? Basically it seems really useful to try to build an intra-species hedonic comparison first, and worry about inter-species comparisons later.
That said—on inter-species comparisons, I don’t think any of the methods you mention are likely to give a good answer to (2), especially as none deal directly with brain activity. It’s possible (although I don’t know for sure) that some of QRI’s work is relevant here- essentially, we have a method (‘CDNS’) that could be adapted to estimate the degree to which a given connectome is naturally ‘tuned’ toward harmony or dissonance. This would face many of the same data & validation challenges you mention for other proxy measures, but essentially I’m skeptical that it’s possible to address (2) without something like what QRI is doing, that actually looks at brain activity and doesn’t rely on hard-coded assumptions about things that could be species-specific and are probably leaky anyway (e.g., brain region X is associated with pain).
If it checks out, this could give a rough inter-species comparison of natural hedonic set-points between literally any two connectomes—cows, chickens, rats, grasshoppers, mosquitos, humans. Probably not an end-all-be-all, but a useful tool in the toolbox. More on our ‘CDNS’ method.
Glad to see work on this.
It seems to me there are two questions here: (1) what are the average effects of different environments (e.g. wilderness; factory farm) on animal well-being? (2) what is the average hedonic well-being of different species?
It feels like you’re attempting to find a method that will give the combined score for any given animal. But maybe it’d be best to focus on each individually. Some of the methods you mentioned (e.g. cortisol levels, behavior anomalies, self-narcotization) seem fairly solid for addressing (1), if you had more data. What’s the biggest hurdle to gathering more data? Can you think of any clever ways to gather lots of data cheaply? Basically it seems really useful to try to build an intra-species hedonic comparison first, and worry about inter-species comparisons later.
That said—on inter-species comparisons, I don’t think any of the methods you mention are likely to give a good answer to (2), especially as none deal directly with brain activity. It’s possible (although I don’t know for sure) that some of QRI’s work is relevant here- essentially, we have a method (‘CDNS’) that could be adapted to estimate the degree to which a given connectome is naturally ‘tuned’ toward harmony or dissonance. This would face many of the same data & validation challenges you mention for other proxy measures, but essentially I’m skeptical that it’s possible to address (2) without something like what QRI is doing, that actually looks at brain activity and doesn’t rely on hard-coded assumptions about things that could be species-specific and are probably leaky anyway (e.g., brain region X is associated with pain).
If it checks out, this could give a rough inter-species comparison of natural hedonic set-points between literally any two connectomes—cows, chickens, rats, grasshoppers, mosquitos, humans. Probably not an end-all-be-all, but a useful tool in the toolbox. More on our ‘CDNS’ method.