You mention nanotechnology; in a similar vein, understanding molecular biology could help deal with biotech x-risks. Knowing more about plausible levels of manufacture/detection could help us understand the strategic balance better, and there’s obviously also concrete work to be done in building eg better sensors.
On the more biochemical end, there’s of mechanical and biological engineering for cultured meat.
Also, wrt non-physics careers, a major one is quantitative trading (eg at Jane Street), which seems to benefit from a physics-y mindset and use some similar tools. I think there’s even a finance firm that mostly hires physics PhDs.
You mention nanotechnology; in a similar vein, understanding molecular biology could help deal with biotech x-risks. Knowing more about plausible levels of manufacture/detection could help us understand the strategic balance better, and there’s obviously also concrete work to be done in building eg better sensors.
On the more biochemical end, there’s of mechanical and biological engineering for cultured meat.
Also, wrt non-physics careers, a major one is quantitative trading (eg at Jane Street), which seems to benefit from a physics-y mindset and use some similar tools. I think there’s even a finance firm that mostly hires physics PhDs.