From what I read, Snowdrift is not quite “doing this”, at least not in as far as the main aim here in Mutual Matching is to ask more from a participant only if leverage increases! But there are close links, thanks for pointing out the great project!
Snowdrift has people contribute as an increasing function of the # of co-donors, but the leverage, which is implicit, stays constant = 2, always (except for those cases where it even declines if others’ chosen upper bounds are being surpassed), if my quick calculation is right (pretty sure*). This may or may not be a good idea with +- rational contributors (either way, I btw think it would be valuable for transparency to indicate this leverage explicitly to readers of the snowdrift page, it’s a crucial factor for donors imho). Pragmatically it may turn out to be a really useful simplification though.
Here instead, Mutual Matching tries to motivate people by ensuring that they donate more only as leverage really increases. I see this as key innovation also relative to Buchholz et al. (maybe worth looking at that paper, it might be closer to snowdrift, as it also does not make donations directly conditional on leverage I think, tbc). As I discuss, this has pros and cons; the main risk being that the requested donation increases quickly with the leverage and thus with the # of participants.
Thanks to your links I just saw also the Rational Street Performer Protocol, which I should also look at, even if it equally seems to focus on donating more as more is given in total, rather than like here explicitly as leverage is increased; it makes the timing question very explicit, which is a dimension I have here not much looked at yet.
Will expand the text & make the connections to both asap!
*snowdrift: Each gives 0.1 ct per participant, meaning for 1000 (or 5000) you give 1$ (or 5$) and thanks to you all these others give 1$ (or $5) more in total than without you, i.e. extra leverage of constantly 1 in addition to your own contribution itself, meaning total leverage of your contribution = 2 always.
Great work!
https://snowdrift.coop is already doing this.
See also: https://forum.effectivealtruism.org/posts/nBEStJvWaBjMmBa8W/rewarding-private-provision-of-public-goods
Would love to have a chat: victor(dot)s(dot)nicolaas(at)protonmail(dot)com
From what I read, Snowdrift is not quite “doing this”, at least not in as far as the main aim here in Mutual Matching is to ask more from a participant only if leverage increases! But there are close links, thanks for pointing out the great project!
Snowdrift has people contribute as an increasing function of the # of co-donors, but the leverage, which is implicit, stays constant = 2, always (except for those cases where it even declines if others’ chosen upper bounds are being surpassed), if my quick calculation is right (pretty sure*). This may or may not be a good idea with +- rational contributors (either way, I btw think it would be valuable for transparency to indicate this leverage explicitly to readers of the snowdrift page, it’s a crucial factor for donors imho). Pragmatically it may turn out to be a really useful simplification though.
Here instead, Mutual Matching tries to motivate people by ensuring that they donate more only as leverage really increases. I see this as key innovation also relative to Buchholz et al. (maybe worth looking at that paper, it might be closer to snowdrift, as it also does not make donations directly conditional on leverage I think, tbc). As I discuss, this has pros and cons; the main risk being that the requested donation increases quickly with the leverage and thus with the # of participants.
Thanks to your links I just saw also the Rational Street Performer Protocol, which I should also look at, even if it equally seems to focus on donating more as more is given in total, rather than like here explicitly as leverage is increased; it makes the timing question very explicit, which is a dimension I have here not much looked at yet.
Will expand the text & make the connections to both asap!
*snowdrift: Each gives 0.1 ct per participant, meaning for 1000 (or 5000) you give 1$ (or 5$) and thanks to you all these others give 1$ (or $5) more in total than without you, i.e. extra leverage of constantly 1 in addition to your own contribution itself, meaning total leverage of your contribution = 2 always.