Florida is a challenging environment. Right-sizing (manual J) of cooling equipment is especially important in humid climates. In over-sized systems, short run times tend to satisfy the thermostat but not properly dehumidify, because this takes much longer. In addition, Florida has many duct systems in unconditioned attics, and duct leakage draws humid air and contaminants from outdoors. If you have a system in an unconditioned attic this should be at minimum fastidiously sealed. Many people in building geek circles feel that conditioned attics are warranted, but my experience suggests that these aren’t often cost-effective retrofits: https://buildingscience.com/documents/building-science-insights-newsletters/bsi-119-conditioned-unconditioned
The final 2 considerations are 1) turning the AC fan to the lowest possible speed that can be sustained without freezing the indoor coil. This is generally ~325 cubic feet/minute per nominal ton of cooling. And 2) adding supplemental dehumidification. Target <55% relative humidity at ~75F. This can be a simple standalone dehumidifier piped directly to a sump or condensate pump.
For filtration, recommendations largely in line with pandemic seem fine for small particulate too—i.e. MERV 13 filters in centralized systems. IAQ monitors can be great tools as well!
Thanks so much for doing that!
Florida is a challenging environment. Right-sizing (manual J) of cooling equipment is especially important in humid climates. In over-sized systems, short run times tend to satisfy the thermostat but not properly dehumidify, because this takes much longer. In addition, Florida has many duct systems in unconditioned attics, and duct leakage draws humid air and contaminants from outdoors. If you have a system in an unconditioned attic this should be at minimum fastidiously sealed. Many people in building geek circles feel that conditioned attics are warranted, but my experience suggests that these aren’t often cost-effective retrofits: https://buildingscience.com/documents/building-science-insights-newsletters/bsi-119-conditioned-unconditioned
The final 2 considerations are 1) turning the AC fan to the lowest possible speed that can be sustained without freezing the indoor coil. This is generally ~325 cubic feet/minute per nominal ton of cooling. And 2) adding supplemental dehumidification. Target <55% relative humidity at ~75F. This can be a simple standalone dehumidifier piped directly to a sump or condensate pump.
For filtration, recommendations largely in line with pandemic seem fine for small particulate too—i.e. MERV 13 filters in centralized systems. IAQ monitors can be great tools as well!
Reach out directly if you need anything!