Yup, that’s an accurate summary of my beliefs (with the caveat that u(c) is non-critical and can be replaced with a constant or whatever else you want; only u′(c) is essential).
I think that assumption isn’t sufficient to determine η from VSLY data. By not specifying the functional form for VSLYs, η will be underidentified in practice. Assuming only that the denominator of the VSLY term is u′(c) and that u(⋅) is isoelastic, we could, for example, have either of the following:
VSLYc=kcu′(c)=kcη−1
VSLYc=u(c)cu′(c)=cη−1−1η−1 or ln(c) if η=1
Now suppose you observe the VSLY/income data and think it’s roughly ln(c). Would you conclude from this that η=1 and the right functional form is (2)? Or that η=1.2 and the right functional form is (1) with k=1.8? (Plot)
Does that sound right to you? If so, I think that puts us here:
If so, my view would be that valuing an extra life year according to u(c)u′(c) for some η is a functional form assumption on how people value an extra life-year. In some way, I see the data on η from (2) as a test of that assumption. Whereas in your view, which I think is also reasonable, the assumption and data on (3) is a test/verification of our estimate of η from (2).
______
One counterargument might be that for any of these functional forms, an increase in η will lead to higher valuations of health at higher incomes. However, I’m not sure that works in practice. I’d imagine it going something like this (assuming the only assumption we’re willing to make ex-ante is that the VSLY denominator is u′(c)):
Estimate η from data on consumption valuations at different income levels
Choose VSLY functional form to fit the revealed preferences data given the η estimate from (1).
Revise our estimate in (1) upwards.
Since we’re still trying to match the VSLY data given the η from 1: adjust the VSLY functional form. (Rather than increasing η in the previous form)
I’m agnostic on the right functional form for the VSLY, just as I’m agnostic on the right η. My point was just that you cannot have it be independent of u′(c).
You need to impose some structure to get an exact identification of η, but that should not be interpreted as meaning that we can be fully agnostic about how η affects valuations, the way you describe. So I don’t think that puts us at the point you stated. Specifically, I think the framework you describe where the VSLY relative to income doublings is constant while you shift η is still inconsistent with utility maximization, and still not a valid way to interpret how η affects the value of health vs income.
I think that assumption isn’t sufficient to determine η from VSLY data. By not specifying the functional form for VSLYs, η will be underidentified in practice. Assuming only that the denominator of the VSLY term is u′(c) and that u(⋅) is isoelastic, we could, for example, have either of the following:
VSLYc=kcu′(c)=kcη−1
VSLYc=u(c)cu′(c)=cη−1−1η−1 or ln(c) if η=1
Now suppose you observe the VSLY/income data and think it’s roughly ln(c). Would you conclude from this that η=1 and the right functional form is (2)? Or that η=1.2 and the right functional form is (1) with k=1.8? (Plot)
Does that sound right to you? If so, I think that puts us here:
______
One counterargument might be that for any of these functional forms, an increase in η will lead to higher valuations of health at higher incomes. However, I’m not sure that works in practice. I’d imagine it going something like this (assuming the only assumption we’re willing to make ex-ante is that the VSLY denominator is u′(c)):
Estimate η from data on consumption valuations at different income levels
Choose VSLY functional form to fit the revealed preferences data given the η estimate from (1).
Revise our estimate in (1) upwards.
Since we’re still trying to match the VSLY data given the η from 1: adjust the VSLY functional form. (Rather than increasing η in the previous form)
I’m agnostic on the right functional form for the VSLY, just as I’m agnostic on the right η. My point was just that you cannot have it be independent of u′(c).
You need to impose some structure to get an exact identification of η, but that should not be interpreted as meaning that we can be fully agnostic about how η affects valuations, the way you describe. So I don’t think that puts us at the point you stated. Specifically, I think the framework you describe where the VSLY relative to income doublings is constant while you shift η is still inconsistent with utility maximization, and still not a valid way to interpret how η affects the value of health vs income.