Thanks for those links, this is an interesting topic I may look into more in the future.
Another thing is that, if you look at what a single consumer GPU can do when it runs an LLM or diffusion model… well it’s not doing human-level AGI, but it’s sure doing something, and I think it’s a sound intuition (albeit hard to formalize) to say “well it kinda seems implausible that the brain is doing something that’s >1000× harder to calculate than that”.
It doesn’t seem that implausible to me. In general I find the computational power required for different tasks (such as what I do in computational physics) frequently varies by many orders of magnitude. LLMs get to their level of performance by sifting throughall the data on the internet, something we can’t do, and yet still perform worse than a regular human on many tasks, so clearly theres a lot of extra something going on here. It actually seems kind of likely to me that what the brain is doing is more than 3 orders of magnitude more difficult.
I don’t know enough to be confident on any of this, but If AGI turns out to be impossible on silicon chips with earths resources, I would be surprised but not totally shocked.
Thanks for those links, this is an interesting topic I may look into more in the future.
It doesn’t seem that implausible to me. In general I find the computational power required for different tasks (such as what I do in computational physics) frequently varies by many orders of magnitude. LLMs get to their level of performance by sifting through all the data on the internet, something we can’t do, and yet still perform worse than a regular human on many tasks, so clearly theres a lot of extra something going on here. It actually seems kind of likely to me that what the brain is doing is more than 3 orders of magnitude more difficult.
I don’t know enough to be confident on any of this, but If AGI turns out to be impossible on silicon chips with earths resources, I would be surprised but not totally shocked.