I think this description generally falls in line with what I’ve experienced and heard secondhand and is broadly true. However, there are some differences between my impression of it and yours. (But it sounds like you’ve collected more accounts, more systematically, and I’ve actually only gone up to the M.A. level in grad school, so I’m leaning towards trusting your aggregate)
Peer review is a disaster
I think we can get at better ways than peer review, but also, don’t forget that people will sort of inevitably have Feelings about getting peer reviewed, especially if the review is unfavorable, and this might bias them to say that it’s unfair or broken. I wouldn’t expect peer review is particularly better or worse than what you’d expect from what is basically a group of people with some knowledge of a topic and some personal investment in the matter having a discussion—it can certainly be a space for pettiness, both by the reviewer and from the reviewed, as well as a space for legitimate discussion.
PIs mostly manage people—all the real work is done by grad students and postdocs
I think this is sometimes true, but I would not consider this a default state of affairs. I think some, but not all, grad students and post docs can conceive of and execute a good project from start to finish (more, in top universities). However, I think most successful PIs are constantly running projects of their own as well. Moreover, a lot of grad students and post docs are running projects that either the PI came up with, or independently created projects that are ultimately a small permutation within a larger framework that the PI came up with. I do think it sometimes happens that some people believe they are doing all the work and sort of forget the degree of training and underestimate how much the PI is behind the scenes.
management and fundraising (and endless administrative responsibilities bestowed on any tenure-track professor) and can 100% focus on doing science and publishing papers, while getting mentoring from your senior PI and while being helped by all the infrastructure established labs
My impression was actually that grant writing, management, and setting up infrastructure is the bulk of Doing Science, properly understood. (Whereas, I get the impression that this write up sort of frames it as some sort of side show to the Real Work of Doing Science). With “fundraising”, the writer of the grant is the one who has to engage in the big picture thinking, make the pitch, and plan the details to a level of rigor sufficient to satisfy an external body. With “infrastructure”, one must set up the lab protocols so that they’re actually measuring what they are meant to. It’s easy to do this wrong, and what’s worse, it’s easy to do this wrong and not even realize you are doing it wrong and have those mistakes make it all the way up to a nonsensical and wrong publication. I think there is a level of fairly deep expertise involved in setting up protocols. And “management” in this context also involves a lot of teaching people skills and concepts, including sometimes a fair bit of hand-holding during the process of publishing papers (students’ first drafts aren’t always great, even if the student is very good).
People outside of biology generally think that doing a PhD means spending 6 years at the bench performing your advisor’s experiments and is only possible with perfect undergrad GPA, not realizing that neither of these are true of you’re truly capable
Very true in one sense—I agree that academia is very forgiving about credentials and gpa relative to other forms of post-graduate education, and people are definitely excited and responsive to being cold contacted by motivated students who will do their own projects. However, keep in mind that if you’re planning to work on whatever you want, rather than your adviser’s experiments, you will have more trouble fully utilizing the adviser’s management/infrastructure/expertise and to a lesser extent grants.
For a unique and individual project, you might have to build some of your infrastructure on your own. This means things may take much longer and are more likely not to work the first few times—all of which is a wonderful learning experience, but this does not always align with the incentive of publishing papers and graduating quickly. I think some fields (especially the ones closer to math) have the sort of “pure researcher” track you have in mind, but it’s rare in social and biological sciences in part because the most needed people are in fact those with scientific expertise who can train and manage a team and build infrastructure/protocol as well s fund raise and set an agenda- i think it would be tough torealistically delegate this to anyone who doesn’t know the science.
(But—again, this is only my impression from doing a masters and from conversations I’ve had with other people. Getting a sense of a whole field isn’t really easy and I imagine different regions and so on are very different.)
Thanks so much for the feedback! Especially the point about writing grants being real science. I completely agree and I should add this in the post—planning and thinking in detail about your research and expectations in the process of writing a grant application is indeed very much science.
writing an A0 makes me smarter. Writing an A1 makes me especially smarter. Taking smart criticism into account and finding solutions to address them is almost as good as having a great collaborator. /9 (https://twitter.com/HCCvPDAC/status/1162453567191433216)
I think this description generally falls in line with what I’ve experienced and heard secondhand and is broadly true. However, there are some differences between my impression of it and yours. (But it sounds like you’ve collected more accounts, more systematically, and I’ve actually only gone up to the M.A. level in grad school, so I’m leaning towards trusting your aggregate)
I think we can get at better ways than peer review, but also, don’t forget that people will sort of inevitably have Feelings about getting peer reviewed, especially if the review is unfavorable, and this might bias them to say that it’s unfair or broken. I wouldn’t expect peer review is particularly better or worse than what you’d expect from what is basically a group of people with some knowledge of a topic and some personal investment in the matter having a discussion—it can certainly be a space for pettiness, both by the reviewer and from the reviewed, as well as a space for legitimate discussion.
I think this is sometimes true, but I would not consider this a default state of affairs. I think some, but not all, grad students and post docs can conceive of and execute a good project from start to finish (more, in top universities). However, I think most successful PIs are constantly running projects of their own as well. Moreover, a lot of grad students and post docs are running projects that either the PI came up with, or independently created projects that are ultimately a small permutation within a larger framework that the PI came up with. I do think it sometimes happens that some people believe they are doing all the work and sort of forget the degree of training and underestimate how much the PI is behind the scenes.
My impression was actually that grant writing, management, and setting up infrastructure is the bulk of Doing Science, properly understood. (Whereas, I get the impression that this write up sort of frames it as some sort of side show to the Real Work of Doing Science). With “fundraising”, the writer of the grant is the one who has to engage in the big picture thinking, make the pitch, and plan the details to a level of rigor sufficient to satisfy an external body. With “infrastructure”, one must set up the lab protocols so that they’re actually measuring what they are meant to. It’s easy to do this wrong, and what’s worse, it’s easy to do this wrong and not even realize you are doing it wrong and have those mistakes make it all the way up to a nonsensical and wrong publication. I think there is a level of fairly deep expertise involved in setting up protocols. And “management” in this context also involves a lot of teaching people skills and concepts, including sometimes a fair bit of hand-holding during the process of publishing papers (students’ first drafts aren’t always great, even if the student is very good).
Very true in one sense—I agree that academia is very forgiving about credentials and gpa relative to other forms of post-graduate education, and people are definitely excited and responsive to being cold contacted by motivated students who will do their own projects. However, keep in mind that if you’re planning to work on whatever you want, rather than your adviser’s experiments, you will have more trouble fully utilizing the adviser’s management/infrastructure/expertise and to a lesser extent grants.
For a unique and individual project, you might have to build some of your infrastructure on your own. This means things may take much longer and are more likely not to work the first few times—all of which is a wonderful learning experience, but this does not always align with the incentive of publishing papers and graduating quickly. I think some fields (especially the ones closer to math) have the sort of “pure researcher” track you have in mind, but it’s rare in social and biological sciences in part because the most needed people are in fact those with scientific expertise who can train and manage a team and build infrastructure/protocol as well s fund raise and set an agenda- i think it would be tough to realistically delegate this to anyone who doesn’t know the science.
(But—again, this is only my impression from doing a masters and from conversations I’ve had with other people. Getting a sense of a whole field isn’t really easy and I imagine different regions and so on are very different.)
Thanks so much for the feedback! Especially the point about writing grants being real science. I completely agree and I should add this in the post—planning and thinking in detail about your research and expectations in the process of writing a grant application is indeed very much science.
Added this quote to the Appendix: