Very interesting post! I have worked in life science up to the postdoc level and think that is generally a reasonable summary of how life sciences research works (disclosure, Guzey interviewed me for this study).
One question is I have is how generalizable is this description geographically and across Universities? Based on the Universities/funders referenced I’d assume your thinking about Tier 1 Research Universities in the US. But did the demographics of your interviewee demographics suggest this could be situation more broadly?
A few other comments to e on some of the points: Role of PIs Agreed that senior PIs with large labs tend not to do very much bench work themselves. However, they aren’t solely managing and writing grants—I think one of the most important things PIs do is knowledge synthesis through writing literature reviews. I haven’t really met any postdocs that have the depth and breadth of knowledge of their lab head, which allows the later to both provide a high-level summary of their fields in reviews and also propose new ways forward in their grants. A counterpoint I’ve come across is in mixed labs runs by a PI with a computational background who has postdocs and PhDs doing lab work while he works on using their biological results for computational modelling. From my perspective, these types of labs seem to function quite well as the PI usually relies on people coming into the lab to be well trained in the biological assays they’ll use, but then teaches them computational techniques that end up using themselves by the end of their project.
Peer review One of the big drawbacks of peer review is the hugely variable quality of reviews that are provided. As an example simply in terms of the level of detail provided, I have had comments of one paragraph and three pages for the same article. I think a key reason for this is there isn’t really any standardized format or expectations for reviews nor is there much training or feedback for reviewers. One thought I’ve had is that paying peer-reviewers would allow journals to both enforce review consistency and quality—although publishers have such large profit margins that it this could be feasible, they have no incentive to do so as scientists accept the status quo. In the absence of paid peer-review, I think that disclosing reviewer names and comments helps prevent ‘niche guarding’ and encourage reviewers to provide a useful and honest review (eLife does this currently, not sure if any other journals do so).
Permanent researchers Agreed that letting postdocs move into staff scientist/researcher positions would be helpful—this has been discussed a bit in the Nature and Sciences career sections over the last few years (such as here). I’ve usually heard from postdocs who moved into staff scientist or lab/facility manager positions that they wanted to stop relying on grants for their employees and to get some job stability. But some then later regretted the move after finding the positions didn’t have many options for career advancement relative the professor track. The staff scientists role is a relatively new academic position (although it has been around for a long time in government and private research labs) that doesn’t yet have a lot of consistency between Universities—it would probably help to have more discussion and even formalize the roles expectations before a lot of people move into it.
Solo founders This is an interesting observation and I hadn’t thought about the individual lab head model in this way. I’d actually like to take this a step further and say that academia has a habit of breaking up good pairs of biologists. How so? In a few cases, I’ve seen two senior postdocs or a postdoc and junior PI (so essentially two researchers quite closely matched their level of experience and with complementary skills) work really well together and produce outstanding results over a few years, which will usually lead to one of the duo getting a permanent position. The other may be able to continue on as a postdoc for a while, but as their research speciality will overlap heavily with their colleague’s field and it’s unlikely that the hiring/promoting institution will open another position in a similar area for a few years, the postdoc will probably have to move elsewhere to continue their career. Although the two may continue to collaborate, the second person to be hired often starts working on different topics to show their intellectual independence (although the new topics may be less impactful than what they were working on as a pair). I only know of a few cases where duos separated in this way and I haven’t really followed their outcomes, but I’d assume that the productivity of both researchers declined afterwards. Allowing one to move into a staff researcher position would help in this respect.
Big labs vs. small labs Another option is a cluster of small labs working on a similar theme (I was in one in Lund that worked on Vision, another in the department worked on Pheromones). This seems to be more common in Northern Europe where high salaries tend to limit the group sizes that are possible (often PI, 1-2 postdocs, 1-2 PhDs). Clusters seemed to have the benefits noted for larger labs, but meant there were a lot of PIs around to mentor students, and also allowed the cost of lab facilities and support staff to be shared.
Research niches Territorial PIs seem quite common, and as noted, the publication/grant review process allows them to be quite effective at delaying/blocking and even stealing ideas that encroach on their topic. A link was recently posted here to an economics paper taht even suggested new talent entering a field after the death of a gatekeeping PI could speed up research progress. If it seems that a gatekeeping PI is holding back research in an important field, I think that a confrontational grantmaking strategy could be used—whereby a grant agency offers to fund research on the topic but explicitly excludes the PI and his existing collaborators from applying and reviewing proposals.
Differing risk-aversion between PIs and students Although a PI may seem risk-loving, he benefits from being able to diversify his risk across all of his students and may only need one to get a great result to keep the funding coming. He’s unlikely to get all of his students working together on one hard problem, just like a student can’t spend all his time on a high-risk problem. I tend to think that developing the ability to judge a project’s risk is an important skill during a PhD, and a good supervisor should be able to make sure student has at least one ‘safe’ project that they can write up. Realistically it is possible to recover from a PhD where nothing worked well during a postdoc, but it is a setback (particularly in applying for ECR fellowships). I feel that postdocs are possibly where the highest risk projects get taken on at the individual level, both because they have the experience to pick an ambitious but achievable goal, and also because they want to publish something great to have a good chance at a faculty position.
Another comment about the failings of peer-review and convoluted ways to circumvent them. It’s quite common that reviewers will suggest extra experiments, and often these can improve the quality of the paper.
However, a Professor in Cognitive Psychology once told me that reviewers in his field seem to feel obliged to suggest extra experiments and almost always do. Even if the experiments in the paper are already quite complete, the reviewer will usually suggest an unnecessary control or a tangential experiment. So this Professor’s strategy to speed things up was to do, but then leave out, a key control experiment when he wrote up his papers. Reviewers would then almost always pick up on this and only request this additional experiment, and so then he could easily include it and resubmit quickly.
Very interesting post! I have worked in life science up to the postdoc level and think that is generally a reasonable summary of how life sciences research works (disclosure, Guzey interviewed me for this study).
One question is I have is how generalizable is this description geographically and across Universities? Based on the Universities/funders referenced I’d assume your thinking about Tier 1 Research Universities in the US. But did the demographics of your interviewee demographics suggest this could be situation more broadly?
A few other comments to e on some of the points:
Role of PIs
Agreed that senior PIs with large labs tend not to do very much bench work themselves. However, they aren’t solely managing and writing grants—I think one of the most important things PIs do is knowledge synthesis through writing literature reviews. I haven’t really met any postdocs that have the depth and breadth of knowledge of their lab head, which allows the later to both provide a high-level summary of their fields in reviews and also propose new ways forward in their grants.
A counterpoint I’ve come across is in mixed labs runs by a PI with a computational background who has postdocs and PhDs doing lab work while he works on using their biological results for computational modelling. From my perspective, these types of labs seem to function quite well as the PI usually relies on people coming into the lab to be well trained in the biological assays they’ll use, but then teaches them computational techniques that end up using themselves by the end of their project.
Peer review
One of the big drawbacks of peer review is the hugely variable quality of reviews that are provided. As an example simply in terms of the level of detail provided, I have had comments of one paragraph and three pages for the same article.
I think a key reason for this is there isn’t really any standardized format or expectations for reviews nor is there much training or feedback for reviewers. One thought I’ve had is that paying peer-reviewers would allow journals to both enforce review consistency and quality—although publishers have such large profit margins that it this could be feasible, they have no incentive to do so as scientists accept the status quo. In the absence of paid peer-review, I think that disclosing reviewer names and comments helps prevent ‘niche guarding’ and encourage reviewers to provide a useful and honest review (eLife does this currently, not sure if any other journals do so).
Permanent researchers
Agreed that letting postdocs move into staff scientist/researcher positions would be helpful—this has been discussed a bit in the Nature and Sciences career sections over the last few years (such as here). I’ve usually heard from postdocs who moved into staff scientist or lab/facility manager positions that they wanted to stop relying on grants for their employees and to get some job stability. But some then later regretted the move after finding the positions didn’t have many options for career advancement relative the professor track. The staff scientists role is a relatively new academic position (although it has been around for a long time in government and private research labs) that doesn’t yet have a lot of consistency between Universities—it would probably help to have more discussion and even formalize the roles expectations before a lot of people move into it.
Solo founders
This is an interesting observation and I hadn’t thought about the individual lab head model in this way. I’d actually like to take this a step further and say that academia has a habit of breaking up good pairs of biologists. How so? In a few cases, I’ve seen two senior postdocs or a postdoc and junior PI (so essentially two researchers quite closely matched their level of experience and with complementary skills) work really well together and produce outstanding results over a few years, which will usually lead to one of the duo getting a permanent position. The other may be able to continue on as a postdoc for a while, but as their research speciality will overlap heavily with their colleague’s field and it’s unlikely that the hiring/promoting institution will open another position in a similar area for a few years, the postdoc will probably have to move elsewhere to continue their career. Although the two may continue to collaborate, the second person to be hired often starts working on different topics to show their intellectual independence (although the new topics may be less impactful than what they were working on as a pair). I only know of a few cases where duos separated in this way and I haven’t really followed their outcomes, but I’d assume that the productivity of both researchers declined afterwards. Allowing one to move into a staff researcher position would help in this respect.
Big labs vs. small labs
Another option is a cluster of small labs working on a similar theme (I was in one in Lund that worked on Vision, another in the department worked on Pheromones). This seems to be more common in Northern Europe where high salaries tend to limit the group sizes that are possible (often PI, 1-2 postdocs, 1-2 PhDs). Clusters seemed to have the benefits noted for larger labs, but meant there were a lot of PIs around to mentor students, and also allowed the cost of lab facilities and support staff to be shared.
Research niches
Territorial PIs seem quite common, and as noted, the publication/grant review process allows them to be quite effective at delaying/blocking and even stealing ideas that encroach on their topic. A link was recently posted here to an economics paper taht even suggested new talent entering a field after the death of a gatekeeping PI could speed up research progress. If it seems that a gatekeeping PI is holding back research in an important field, I think that a confrontational grantmaking strategy could be used—whereby a grant agency offers to fund research on the topic but explicitly excludes the PI and his existing collaborators from applying and reviewing proposals.
Differing risk-aversion between PIs and students
Although a PI may seem risk-loving, he benefits from being able to diversify his risk across all of his students and may only need one to get a great result to keep the funding coming. He’s unlikely to get all of his students working together on one hard problem, just like a student can’t spend all his time on a high-risk problem.
I tend to think that developing the ability to judge a project’s risk is an important skill during a PhD, and a good supervisor should be able to make sure student has at least one ‘safe’ project that they can write up. Realistically it is possible to recover from a PhD where nothing worked well during a postdoc, but it is a setback (particularly in applying for ECR fellowships).
I feel that postdocs are possibly where the highest risk projects get taken on at the individual level, both because they have the experience to pick an ambitious but achievable goal, and also because they want to publish something great to have a good chance at a faculty position.
Another comment about the failings of peer-review and convoluted ways to circumvent them. It’s quite common that reviewers will suggest extra experiments, and often these can improve the quality of the paper.
However, a Professor in Cognitive Psychology once told me that reviewers in his field seem to feel obliged to suggest extra experiments and almost always do. Even if the experiments in the paper are already quite complete, the reviewer will usually suggest an unnecessary control or a tangential experiment. So this Professor’s strategy to speed things up was to do, but then leave out, a key control experiment when he wrote up his papers. Reviewers would then almost always pick up on this and only request this additional experiment, and so then he could easily include it and resubmit quickly.