Hey, great post. I mostly agree with your points here, and agree that an intelligence explosion is incredibly unlikely, especially anytime soon.
I’m not too sure about the limits of algorithm point: My impression is that current AI architecture is incredibly inefficient at using data when compared to humans. So it seems like even if we hit the limit with current architecture, there’s room to invent new algorithms that are better.
I’m interested in your expertise as a a computational neuroscientist, do you think there are any particular insights from that field that are applicable to these discussions?
Thanks for your thoughts! When writing this up I also felt that the algorithm one is the weakest one, so let me answer from two perspectives:
From the room to invent new algorithms: Convolutional neural networks have been around since the 80s, we’ve been using GPUs to run them since about 10 years. If there really would be huge potential left, I’d be a bit surprised that we didn’t find it in the last 40 years already—we certainly had incentives because hardware was so slow and people had to optimize, but of course you never know. I tried to find a paper reviewing efficiency improvements of non-negative matrix factorization over time, I think that could be a fun guide, but couldn’t find one.
From the brain perspective: Yes, it’s puzzling that the brain can do all this on 12 watts power while OpenAI is using server farms that consume much much more than that. So somewhere there must be huge efficiency gains. Note that that’s mostly on the training side—“evaluating” a network is pretty efficient as far as I know. For training, there could be different reasons:
Transfer learning: Maybe the “computation of evolution” just “pre-programmed” our brain similar to how we use transfer learning. It’s already pretty close to where we want it and we just need to fine tune. Transfer learning on neural networks is already pretty cheap today. One argument supporting this would be that many animals are perfectly functional from day 1 of their life without much learning. Of course not same level of intelligence, but still.
Hardware: The brain doesn’t run on silicone. We use a very very abstracted version of our brain and there is much more going on biologically. Some people argue that a lot of computation is already happening in the dendrites, maybe the morphology of neurons has effects on computation, maybe the specific nonlinearity applied by the neurons is more relevant than we think, … . One way to try to adress this would be to build chips that are more similar (“neuromorphic”) but I haven’t seen much progress there
Architecture: The brain isn’t a CNN. This might be a good approximation for our sensory cortices but even there it’s not the same. The brain is very recurrent, not feed-forward, and it can’t send signals back through it’s synapses and therefore can’t implement backpropagation. Maybe we’re just using the wrong architecture and if we find the right one it’s going to go much faster. I did my PhD on something related to this and I gave up haha, but of course, I’m sure there are lots of things to be discovered here.
Hey, great post. I mostly agree with your points here, and agree that an intelligence explosion is incredibly unlikely, especially anytime soon.
I’m not too sure about the limits of algorithm point: My impression is that current AI architecture is incredibly inefficient at using data when compared to humans. So it seems like even if we hit the limit with current architecture, there’s room to invent new algorithms that are better.
I’m interested in your expertise as a a computational neuroscientist, do you think there are any particular insights from that field that are applicable to these discussions?
Thanks for your thoughts! When writing this up I also felt that the algorithm one is the weakest one, so let me answer from two perspectives:
From the room to invent new algorithms: Convolutional neural networks have been around since the 80s, we’ve been using GPUs to run them since about 10 years. If there really would be huge potential left, I’d be a bit surprised that we didn’t find it in the last 40 years already—we certainly had incentives because hardware was so slow and people had to optimize, but of course you never know. I tried to find a paper reviewing efficiency improvements of non-negative matrix factorization over time, I think that could be a fun guide, but couldn’t find one.
From the brain perspective: Yes, it’s puzzling that the brain can do all this on 12 watts power while OpenAI is using server farms that consume much much more than that. So somewhere there must be huge efficiency gains. Note that that’s mostly on the training side—“evaluating” a network is pretty efficient as far as I know. For training, there could be different reasons:
Transfer learning: Maybe the “computation of evolution” just “pre-programmed” our brain similar to how we use transfer learning. It’s already pretty close to where we want it and we just need to fine tune. Transfer learning on neural networks is already pretty cheap today. One argument supporting this would be that many animals are perfectly functional from day 1 of their life without much learning. Of course not same level of intelligence, but still.
Hardware: The brain doesn’t run on silicone. We use a very very abstracted version of our brain and there is much more going on biologically. Some people argue that a lot of computation is already happening in the dendrites, maybe the morphology of neurons has effects on computation, maybe the specific nonlinearity applied by the neurons is more relevant than we think, … . One way to try to adress this would be to build chips that are more similar (“neuromorphic”) but I haven’t seen much progress there
Architecture: The brain isn’t a CNN. This might be a good approximation for our sensory cortices but even there it’s not the same. The brain is very recurrent, not feed-forward, and it can’t send signals back through it’s synapses and therefore can’t implement backpropagation. Maybe we’re just using the wrong architecture and if we find the right one it’s going to go much faster. I did my PhD on something related to this and I gave up haha, but of course, I’m sure there are lots of things to be discovered here.