Re comment 1: Yes, sorry this was just meant to point at a potential parallel not to work out the parallel in detail. I think it’d be valuable to work out the potential parallel between the DM agent’s predicate predictor module (Fig12/pg14) with my factored-noxiousness-object-detector idea. I just took a brief look at the paper to refresh my memory, but if I’m understanding this correctly, it seems to me that this module predicts which parts of the state prevent goal realization.
I guess what I don’t understand is how the “predicate predictor” thing can make it so that the setup is less likely to yield models that support morally relevant valence (if you indeed think that). Suppose the environment is modified such that the observation that the agent gets in each time step includes the value of every predicate in the reward specification. That would make the “predicate predictor” useless (I think; just from a quick look at the paper). Would that new setup be more likely than the original to yield models that have morally relevant valence?
Your new setup seems less likely to have morally relevant valence. Essentially the more the setup factors out valence-relevant computation (e.g. by separating out a module, or by accessing an oracle as in your example) the less likely it is for valenced processing to happen within the agent.
Just to be explicit here, I’m assuming estimates of goal achievement are valence-relevant. How generally this is true is not clear to me.
Essentially the more the setup factors out valence-relevant computation (e.g. by separating out a module, or by accessing an oracle as in your example) the less likely it is for valenced processing to happen within the agent.
I think the analogy to humans suggests otherwise. Suppose a human feels pain in their hand due to touching something hot. We can regard all the relevant mechanisms in their body outside the brain—those that cause the brain to receive the relevant signal—as mechanisms that have been “factored out from the brain”. And yet those mechanisms are involved in morally relevant pain. In contrast, suppose a human touches a radioactive material until they realize it’s dangerous. Here there are no relevant mechanisms that have been “factored out from the brain” (the brain needs to use ~general reasoning); and there is no morally relevant pain in this scenario.
Though generally if “factoring out stuff” means that smaller/less-capable neural networks are used, then maybe it can reduce morally relevant valence risks.
Good clarification. Determining which kinds of factoring are the ones which reduce valence is more subtle than I had thought. I agree with you that the DeepMind set-up seems more analogous to neural nociception (e.g. high heat detection). My proposed set-up (Figure 5) seems significantly different from the DM/nociception case, because it factors the step where nociceptive signals affect decision making and motivation. I’ll edit my post to clarify.
I guess what I don’t understand is how the “predicate predictor” thing can make it so that the setup is less likely to yield models that support morally relevant valence (if you indeed think that). Suppose the environment is modified such that the observation that the agent gets in each time step includes the value of every predicate in the reward specification. That would make the “predicate predictor” useless (I think; just from a quick look at the paper). Would that new setup be more likely than the original to yield models that have morally relevant valence?
Your new setup seems less likely to have morally relevant valence. Essentially the more the setup factors out valence-relevant computation (e.g. by separating out a module, or by accessing an oracle as in your example) the less likely it is for valenced processing to happen within the agent.
Just to be explicit here, I’m assuming estimates of goal achievement are valence-relevant. How generally this is true is not clear to me.
I think the analogy to humans suggests otherwise. Suppose a human feels pain in their hand due to touching something hot. We can regard all the relevant mechanisms in their body outside the brain—those that cause the brain to receive the relevant signal—as mechanisms that have been “factored out from the brain”. And yet those mechanisms are involved in morally relevant pain. In contrast, suppose a human touches a radioactive material until they realize it’s dangerous. Here there are no relevant mechanisms that have been “factored out from the brain” (the brain needs to use ~general reasoning); and there is no morally relevant pain in this scenario.
Though generally if “factoring out stuff” means that smaller/less-capable neural networks are used, then maybe it can reduce morally relevant valence risks.
Good clarification. Determining which kinds of factoring are the ones which reduce valence is more subtle than I had thought. I agree with you that the DeepMind set-up seems more analogous to neural nociception (e.g. high heat detection). My proposed set-up (Figure 5) seems significantly different from the DM/nociception case, because it factors the step where nociceptive signals affect decision making and motivation. I’ll edit my post to clarify.