Do you feel it is possible for evolution to select for beings who care about their copies in Everett branches, over beings that don’t? For the purposes of this question let’s say we ignore the “simplicity” complication of the previous point, and assume both species have been created, if that is possible.
It likely depends on what it means for evolution to select for something, and for a species to care about it’s copies in other Everett branches. It’s plausible to imagine a very low-amplitude Everett branch which has a species that uses quantum mechanical bits to make many of it’s decisions, which decreases its chances of reproducing in most Everett branches, but increases it’s chances of reproducing in very very few.
But in order for something to care about it’s copies in other Everett branches, the species would need to be able to model how quantum mechanics works, as well as how acausal trade works if you want it to be able to be selected for caring how it’s decision making process will affect non-causally-reachable Everett branches. I can’t think of any pathways for how a species could increase it’s inclusive genetic fitness by making acausal trades with it’s counterparts in non-causally-reachable Everett branches, but I also can’t think of any proof for why it’s impossible. Thus, I only think it’s unlikely.
For the case where we only care about selecting for caring about future Everett branches, note that if we find ourselves in the situation I described in the original post, and the proposal succeeds, then evolution has just made a minor update towards species which care about their future Everett selves.
It likely depends on what it means for evolution to select for something, and for a species to care about it’s copies in other Everett branches. It’s plausible to imagine a very low-amplitude Everett branch which has a species that uses quantum mechanical bits to make many of it’s decisions, which decreases its chances of reproducing in most Everett branches, but increases it’s chances of reproducing in very very few.
But in order for something to care about it’s copies in other Everett branches, the species would need to be able to model how quantum mechanics works, as well as how acausal trade works if you want it to be able to be selected for caring how it’s decision making process will affect non-causally-reachable Everett branches. I can’t think of any pathways for how a species could increase it’s inclusive genetic fitness by making acausal trades with it’s counterparts in non-causally-reachable Everett branches, but I also can’t think of any proof for why it’s impossible. Thus, I only think it’s unlikely.
For the case where we only care about selecting for caring about future Everett branches, note that if we find ourselves in the situation I described in the original post, and the proposal succeeds, then evolution has just made a minor update towards species which care about their future Everett selves.