The literature calls this broad approach “expansionism” (see also Wilkinson (2021) for similar themes). I’ll note two major problems with it: that it leads to results that are unattractively sensitive to the spatio-temporal distribution of value, and that it fails to rank tons of stuff.
On the first problem, what about the following line of reasoning. (I know there’s probably a good reply to this, but I haven’t gotten far enough to see it myself.)
On a large enough scale, the universe either becomes homogenous, or it’s possible to have infinite utility in a finite region of space time. The idea of infinite (dis)value in a finite region of space time seems crazy to me. (Does this already commit me to the view “Maybe infinities are just not a thing?”) Therefore, let’s stipulate that the latter is the case (the universe is homogenous on a sufficiently large timescale).
For these expansionist approaches with expanding spheres and value densities, wouldn’t the goal be to make the measurement spheres large enough such that whatever patterns there are start to repeat themselves (because of large-scale homogeneity)?
You write:
Consider an infinite line of planets, each of which houses a Utopia, and none of which will ever interact with any of the others. On expansionism, it is extremely good to pull all these planets an inch closer together: so good, indeed, as to justify any finite addition of dystopias to the world (thanks to Amanda Askell, Hayden Wilkinson, and Ketan Ramakrishnan for discussion). After all, pulling on the planets so that there’s an extra Utopia every x inches will be enough for the eventual betterness of the uniform expansions to compensate for any finite number of hellscapes.
However, if you imagine that the universe is homogenous at a large enough scale, then by pulling planets closer to each other in one location, you thereby increased their distance in other locations. In total, you made some regions more dense and other regions less dense. By pulling some planets closer together, you messed up the universe’s homogeneity at the scale of your measurement sphere. That arguably defeats the purpose of the measurement, and it would be more “fair” to measure again with a larger sphere, large enough so the artificial difference you created by moving planets no longer matters. (To truly affect the density of the largest-but-still finite regions, you’d have to move around and infinite number of value locations.)
I’m not sure I’ve described this well, but there’s something here that makes me wonder whether “value density” is perhaps not a completely arbitrary construct.
We could become fanatical about affecting the rate of cosmic expansion, but I think space colonization (+ acausal influence) would probably be more important (good or bad, depending on how it goes and relative weights given to goods and bads).
I really liked this post!
On the first problem, what about the following line of reasoning. (I know there’s probably a good reply to this, but I haven’t gotten far enough to see it myself.)
On a large enough scale, the universe either becomes homogenous, or it’s possible to have infinite utility in a finite region of space time. The idea of infinite (dis)value in a finite region of space time seems crazy to me. (Does this already commit me to the view “Maybe infinities are just not a thing?”) Therefore, let’s stipulate that the latter is the case (the universe is homogenous on a sufficiently large timescale).
For these expansionist approaches with expanding spheres and value densities, wouldn’t the goal be to make the measurement spheres large enough such that whatever patterns there are start to repeat themselves (because of large-scale homogeneity)?
You write:
However, if you imagine that the universe is homogenous at a large enough scale, then by pulling planets closer to each other in one location, you thereby increased their distance in other locations. In total, you made some regions more dense and other regions less dense. By pulling some planets closer together, you messed up the universe’s homogeneity at the scale of your measurement sphere. That arguably defeats the purpose of the measurement, and it would be more “fair” to measure again with a larger sphere, large enough so the artificial difference you created by moving planets no longer matters. (To truly affect the density of the largest-but-still finite regions, you’d have to move around and infinite number of value locations.)
I’m not sure I’ve described this well, but there’s something here that makes me wonder whether “value density” is perhaps not a completely arbitrary construct.
We could become fanatical about affecting the rate of cosmic expansion, but I think space colonization (+ acausal influence) would probably be more important (good or bad, depending on how it goes and relative weights given to goods and bads).