To extend the tool use point a bit, I recall that primates have been found to have extra neurons in sensorimotor brain regions that are most active when the animal is using a tool, and essentially provide extra capacity for the brain to extend sensory and motor mappings/homunculus to include external artifacts (apparently also quite useful when learning to control of things with BCI). I’m not sure if this type of latent neural capacity has been found in rodents and strongly suspect it wouldn’t be present in insects (they tend to be quite frugal with their neurons!), although tool using birds like crows may have been studied as a comparison. Having neural circrity for tool use should be a sufficient (but perhaps not necessary) criteria for flexible tool use and its quite an objective (if difficult) test.
I read this in Beyond Boundaries by Miguel Nicolelis (good book although a bit long winded and fanciful) which should have some academic references.
Actually, Nicolelis’s BCI work also has some relevance to self-recognition. You can put electrodes into a monkey’s motor cortex, measure the neural activation associated with, say, arm movement and then decode those signals to control the motion of a robot arm (that the monkey is is not aware of) pretty well. However, if you show the monkey the arm and it is rewarded for moving the robotic arm, it often stops moving its own arm while continuing to use the disembodied arm (with pretty much the same motor cortex activity). I’d never thought of this in the context of awareness before, but suggests it is somewhat analogous to a mirror test and overcomes some of the limitations you mentioned. A fair bit of a work has been done around insect neural interfaces (probably more invasive and extreme than anything an ethics board would let you do to a mammal to be honest) and you might find that similar tests have been performed but not labeled as a self-recognition tests.
Thanks Gavin! I’ve added Beyond Boundaries to my reading list.
The potential connection between BCI and self-recognition is fascinating. Offhand, do you know any references for insect neural interface studies that might be comparable to the monkey example you describe?
The example that first springs to mind is the work of Kanzaki’s group who study odour plume tracking in silk moths. They have made robots controlled by both a moths walking action (also a movie) and also by its measured neural activity. However, when doing electrophysiology on insects it is common to completely wax their body in place and amputate their legs/wings to minimize electrical noise caused by muscle movement (which they did in the moth case). I’d forgotten this, and it does make it a bit harder for insects to demonstrate self-awareness in a similar way to the monkeys. Still, it’s recently become more common to make recordings from actively behaving insects, as active behaviour has been found to modulate many neural responses (such as optic lobe processing of visual motion), so some more relevant examples might have been published recently.
To extend the tool use point a bit, I recall that primates have been found to have extra neurons in sensorimotor brain regions that are most active when the animal is using a tool, and essentially provide extra capacity for the brain to extend sensory and motor mappings/homunculus to include external artifacts (apparently also quite useful when learning to control of things with BCI). I’m not sure if this type of latent neural capacity has been found in rodents and strongly suspect it wouldn’t be present in insects (they tend to be quite frugal with their neurons!), although tool using birds like crows may have been studied as a comparison. Having neural circrity for tool use should be a sufficient (but perhaps not necessary) criteria for flexible tool use and its quite an objective (if difficult) test.
I read this in Beyond Boundaries by Miguel Nicolelis (good book although a bit long winded and fanciful) which should have some academic references.
Actually, Nicolelis’s BCI work also has some relevance to self-recognition. You can put electrodes into a monkey’s motor cortex, measure the neural activation associated with, say, arm movement and then decode those signals to control the motion of a robot arm (that the monkey is is not aware of) pretty well. However, if you show the monkey the arm and it is rewarded for moving the robotic arm, it often stops moving its own arm while continuing to use the disembodied arm (with pretty much the same motor cortex activity). I’d never thought of this in the context of awareness before, but suggests it is somewhat analogous to a mirror test and overcomes some of the limitations you mentioned. A fair bit of a work has been done around insect neural interfaces (probably more invasive and extreme than anything an ethics board would let you do to a mammal to be honest) and you might find that similar tests have been performed but not labeled as a self-recognition tests.
Thanks Gavin! I’ve added Beyond Boundaries to my reading list.
The potential connection between BCI and self-recognition is fascinating. Offhand, do you know any references for insect neural interface studies that might be comparable to the monkey example you describe?
The example that first springs to mind is the work of Kanzaki’s group who study odour plume tracking in silk moths. They have made robots controlled by both a moths walking action (also a movie) and also by its measured neural activity. However, when doing electrophysiology on insects it is common to completely wax their body in place and amputate their legs/wings to minimize electrical noise caused by muscle movement (which they did in the moth case). I’d forgotten this, and it does make it a bit harder for insects to demonstrate self-awareness in a similar way to the monkeys. Still, it’s recently become more common to make recordings from actively behaving insects, as active behaviour has been found to modulate many neural responses (such as optic lobe processing of visual motion), so some more relevant examples might have been published recently.