Yea, sorry for trying to rush it and not being clear. The main point I took from what you said in the comment I replied to was something like “Early on in one’s career, it is really useful to identify a cause area to work in and over time to filter the best tasks within that cause area”. I think that it might be useful to understand better when that statement is true, and I gave two examples where it seems correct.
I think that there are two important cases where that is true:
If the cause area is one where generally working toward it will improve understanding of the whole cause area and improve one’s ability to identify and shift direction to the most promising tasks later on.
For example, Animal Welfare might arguably not be such a cause because it is composed of at least three different clusters which might not intersect much in their related expertise and reasons for prioritization (alternative proteins, animal advocacy and wild animal welfare). However, these clusters might score well on that factor as sub-cause areas.
If it is generally easy to find promising tasks within that cause area.
Here I mostly agree with the overlapping bell curves picture, but want to explicitly point out that we are talking about task-prioritization done by novices.
Yea, sorry for trying to rush it and not being clear. The main point I took from what you said in the comment I replied to was something like “Early on in one’s career, it is really useful to identify a cause area to work in and over time to filter the best tasks within that cause area”. I think that it might be useful to understand better when that statement is true, and I gave two examples where it seems correct.
I think that there are two important cases where that is true:
If the cause area is one where generally working toward it will improve understanding of the whole cause area and improve one’s ability to identify and shift direction to the most promising tasks later on.
For example, Animal Welfare might arguably not be such a cause because it is composed of at least three different clusters which might not intersect much in their related expertise and reasons for prioritization (alternative proteins, animal advocacy and wild animal welfare). However, these clusters might score well on that factor as sub-cause areas.
If it is generally easy to find promising tasks within that cause area.
Here I mostly agree with the overlapping bell curves picture, but want to explicitly point out that we are talking about task-prioritization done by novices.