Just one thought: there are so many ways for a nuclear war to start accidentally or through miscalculations (without necessarily a conventional war) that it just seems so absurd to see estimates like 0.1%. A big part of it is even just the inscrutable failure rate of complex early warning systems composed of software, ground/space based sensors and communications infrastructure. False alarms are much likelier to be acted on during times of high tension as I pointed out. E.g., during that incident Yeltsin, despite observing a weather rocket with a similar flight profile as a Trident SLBM and having his nuclear briefcase opened, decided to wait a bit until it became clear it was arcing away from Russia. But that was during a time of hugs & kisses with the West. Had it been Putin, in a paranoid state of mind, after months of hearing Western leaders call him an evil new Hitler who must be stopped, you’re absolutely sure he wouldn’t have decided to launch a little earlier?
Another thing is I’m uncomfortable with is the tunnel-vision focus on US-Russia (despite current events). As I also pointed out, China joining the other 2 in adopting launch on early warning raises the accident risk by at least 50% - at least since it’s probably higher at first given their inexperience/initial kinks in the system that haven’t been worked out, etc.[1]
As a last note, cities are likelier to be hit than many think. For one the not explicitly targeting civilians thing isn’t even true. Plus the idea doesn’t pass the smell test. If some country destroys all the US’s cities in a massive attack, you think the US would only hit counterforce targets in retaliation? No, at a minimum the US would hit countervalue targets in response to a countervalue attack. Even if there were no explicit “policy” planning for that (impossible), a leader would simply order that type of targeting in that eventuality anyway.
plus other factors like a big portion of the risk from Launch on Warning being from misinterpreting and launching in response to incoming conventional missiles, and the arguably higher risk of China being involved in a conventional war with the US/allies which includes military strikes on targets in the Chinese mainland.
A big part of it is even just the inscrutable failure rate of complex early warning systems composed of software, ground/space based sensors and communications infrastructure
This list of nuclear close calls has 16 elements. Laplace’s law of succession would give a close call a 5.8% of resulting in a nuclear detonation. Again per Laplace’s law, with 16 close calls in (2022-1953), this would imply a (16+1)/(2022-1953+2) = 24% chance of seeing a close call each year. Combining the two forecast gives us 24% of 5.8%, which is 1.4%/year. But earlier warning systems were less robust to accidents and weather phenomena, and by now there is already a history of false alarms caused by non-threatening events, hence why an order of magnitude lower for a baseline year—as in the superforecaster estimates that Luisa Rodríguez references—doesn’t seem crazy.
Just one thought: there are so many ways for a nuclear war to start accidentally or through miscalculations (without necessarily a conventional war) that it just seems so absurd to see estimates like 0.1%. A big part of it is even just the inscrutable failure rate of complex early warning systems composed of software, ground/space based sensors and communications infrastructure. False alarms are much likelier to be acted on during times of high tension as I pointed out. E.g., during that incident Yeltsin, despite observing a weather rocket with a similar flight profile as a Trident SLBM and having his nuclear briefcase opened, decided to wait a bit until it became clear it was arcing away from Russia. But that was during a time of hugs & kisses with the West. Had it been Putin, in a paranoid state of mind, after months of hearing Western leaders call him an evil new Hitler who must be stopped, you’re absolutely sure he wouldn’t have decided to launch a little earlier?
Another thing is I’m uncomfortable with is the tunnel-vision focus on US-Russia (despite current events). As I also pointed out, China joining the other 2 in adopting launch on early warning raises the accident risk by at least 50% - at least since it’s probably higher at first given their inexperience/initial kinks in the system that haven’t been worked out, etc.[1]
As a last note, cities are likelier to be hit than many think. For one the not explicitly targeting civilians thing isn’t even true. Plus the idea doesn’t pass the smell test. If some country destroys all the US’s cities in a massive attack, you think the US would only hit counterforce targets in retaliation? No, at a minimum the US would hit countervalue targets in response to a countervalue attack. Even if there were no explicit “policy” planning for that (impossible), a leader would simply order that type of targeting in that eventuality anyway.
plus other factors like a big portion of the risk from Launch on Warning being from misinterpreting and launching in response to incoming conventional missiles, and the arguably higher risk of China being involved in a conventional war with the US/allies which includes military strikes on targets in the Chinese mainland.
This list of nuclear close calls has 16 elements. Laplace’s law of succession would give a close call a 5.8% of resulting in a nuclear detonation. Again per Laplace’s law, with 16 close calls in (2022-1953), this would imply a (16+1)/(2022-1953+2) = 24% chance of seeing a close call each year. Combining the two forecast gives us 24% of 5.8%, which is 1.4%/year. But earlier warning systems were less robust to accidents and weather phenomena, and by now there is already a history of false alarms caused by non-threatening events, hence why an order of magnitude lower for a baseline year—as in the superforecaster estimates that Luisa Rodríguez references—doesn’t seem crazy.