I think this is a bit of a straw-person. It may be true that some commentators overstate the immediate relevance of this consideration, as well as how close companies are to reaping the benefits of this efficiency. However, a more charitable interpretation of the argument is that at scale, support systems will be amortized over a much larger amount of desired output. To give two examples:
Animals expend a substantial amount of calories thinking with their brain. This processing will be centralized, and paired down in scope in the computers that run the bioreactors.
Animals spend a lot of energy regulating body temperature. Given that bioreactors will be much bigger than animals, they will have a much lower surface area for heat transfer.
(To be clear, I don’t think this category of argument is a major consideration in favor nor against the feasibility of cultured meat. There are arguments pointed in both direction. One disadvantage of bioreactors is that they have to be designed to last decades, have modular components that can be swapped out, etc.)
This is a good point. I don’t want anyone to write off cultured meat on the basis of my argument alone, but I do want to push us toward much more nuanced conversations. Ideally, discussions of feasibility will include an evaluation of all relevant systems and the ways in which they could improve over animals, weighed against their limitations. I’d refer anyone who is interested in a more rigorous and technical evaluation to the Humbird report.
That said, for me the relevant question isn’t whether it’s strictly possible to make cultured meat competitive in the long run, but whether pursuing cultured meat as a strategy is the best/most cost effective use of money and talent. I think arguments of the style I made can be very helpful for quick comparative evaluations. For example, plant-based meat looks far more promising than cultured meat through this lens, because it is a fundamentally different approach that circumvents many of the limitations of mammalian and avian biology.
I think this is a bit of a straw-person. It may be true that some commentators overstate the immediate relevance of this consideration, as well as how close companies are to reaping the benefits of this efficiency. However, a more charitable interpretation of the argument is that at scale, support systems will be amortized over a much larger amount of desired output. To give two examples:
Animals expend a substantial amount of calories thinking with their brain. This processing will be centralized, and paired down in scope in the computers that run the bioreactors.
Animals spend a lot of energy regulating body temperature. Given that bioreactors will be much bigger than animals, they will have a much lower surface area for heat transfer.
(To be clear, I don’t think this category of argument is a major consideration in favor nor against the feasibility of cultured meat. There are arguments pointed in both direction. One disadvantage of bioreactors is that they have to be designed to last decades, have modular components that can be swapped out, etc.)
This is a good point. I don’t want anyone to write off cultured meat on the basis of my argument alone, but I do want to push us toward much more nuanced conversations. Ideally, discussions of feasibility will include an evaluation of all relevant systems and the ways in which they could improve over animals, weighed against their limitations. I’d refer anyone who is interested in a more rigorous and technical evaluation to the Humbird report.
That said, for me the relevant question isn’t whether it’s strictly possible to make cultured meat competitive in the long run, but whether pursuing cultured meat as a strategy is the best/most cost effective use of money and talent. I think arguments of the style I made can be very helpful for quick comparative evaluations. For example, plant-based meat looks far more promising than cultured meat through this lens, because it is a fundamentally different approach that circumvents many of the limitations of mammalian and avian biology.