New Intuitions for Cultured Meat

A ubiquitous claim in support of cultured meat is that it will be more efficient than animal agriculture because it does not require growing whole animals, only the portions we’re interested in eating. I found this argument seductive when I first encountered the idea of cellular agriculture, and it factored heavily into my decision to spend a few years working in the space.

I have since come to believe that this argument is misleading and has hindered clear thinking about the prospects of cultured meat as a path to impact. Recent techno-economic (meta)analyses have made a compelling, quantitative case for the staggering difficulty of growing cultured meat. However, I suspect that intuitions about the potential efficiency of producing cuts of meat in isolation will continue to draw altruistic investors and talent to the space unless this notion is straightforwardly debunked.

To this end, let us consider a futuristic bioreactor for producing cultured meat. This bioreactor requires only dirty water and whole plants as inputs. It has automatic systems for breaking the plants down into usable biomolecules, assembling those molecules into muscle and fat cells, and forming those cells into the complex tissues we love to eat. It has contamination response systems that destroy almost all pathogens, eliminating the need for media or equipment sterilization. It has precise environmental controls and gas exchange systems that keep the internal temperature, pH, and oxygen levels in the ideal range for cell and tissue growth. These systems are good enough, in fact, that these bioreactors do not require special facilities for operation—they can be placed outdoors and subjected to changing weather conditions, and they’ll have no problem making any necessary adjustments on their own. They manage metabolic waste so effectively that they can maintain suitable growth conditions for months or even years on end. And as meat in the bioreactors grows, the reactors expand to accommodate. When they reach full capacity they use energy and matter from the plant inputs to produce new, identical bioreactors that can repeat the whole process.

Nothing I have seen in the cultured meat space suggests that the industry is close to achieving even one of these capabilities. And yet, such bioreactors already exist. They’re called animals, and they are very, very hard to beat.

Producing cultured meat isn’t as simple as making only the parts of an animal that we want to eat. Sure, if we could make a steak by mixing some hay and water in a bucket, that would probably be more efficient than raising a cow. In reality, cultured meat requires unprecedented industrial processes to do almost everything that animals are so miraculously capable of. A few aspects of the living creature can be left out—including, notably, sentience—and others can be reused, but the challenge at hand is much more akin to creating and operating an artificial animal than to growing any one part in isolation. My hope is that these intuitions might inspire impact-motivated funders, scientists, engineers, and entrepreneurs to focus on more promising strategies for displacing conventional meat and ending factory farming.

Thanks to Sofia Davis-Fogel and Kasey Fish for reviewing drafts of this post.