Sorry, I’m not following. The gain is independent of C, and hence (at given U and F) independent of the expected time period. Assume x is such that cell-based meat enters the market 1 year sooner (i.e. x=F). Accelerating cell-based meat with one year is equally good (spares U=0,1.10^11 animals), whether it is a reduction from 10 to 9 years or 100 to 99 years. Only if C/F would be smaller than a year, accelerating with 1 year would not work.
I totally agree with you, the gain is independent of C.
In your original post, you give a scenario where the cell-based meat enters the market in 100 years, while you seem to believe that an actual estimate would rather be ten years or less. I wondered if this was because you overestimated C, or underestimated F (both affect the timeline, but only F affects the gain)
I now understand that you overestimated C, so this doesn’t affect your prediction about the gain
Sorry, I’m not following. The gain is independent of C, and hence (at given U and F) independent of the expected time period. Assume x is such that cell-based meat enters the market 1 year sooner (i.e. x=F). Accelerating cell-based meat with one year is equally good (spares U=0,1.10^11 animals), whether it is a reduction from 10 to 9 years or 100 to 99 years. Only if C/F would be smaller than a year, accelerating with 1 year would not work.
I totally agree with you, the gain is independent of C.
In your original post, you give a scenario where the cell-based meat enters the market in 100 years, while you seem to believe that an actual estimate would rather be ten years or less. I wondered if this was because you overestimated C, or underestimated F (both affect the timeline, but only F affects the gain)
I now understand that you overestimated C, so this doesn’t affect your prediction about the gain
Thanks for clarifying!