I think cell-based meat will enter the market within 10 years, so I don’t expect C/F to be very big
This makes cell-based meat R&D actually less effective : without discount gain=x⋅UC⋅CF
In term of farm animal suffering, you estimation is U=0.1⋅1011, and C = 1010 . So for each euro invested, you’ll avoid the suffering of CF farm animals. The smaller the time we have to wait before cell-based meat enters the market, the less we should donate.
(This is basically because if cell-based meat enters the market in 10 years, instead of 100, its neglectedness is 10 times smaller, therefore your donation is ten times less effective)
[EDIT]
It actually depends on why you think it will be 10 years instead of 100 : if you think it’s because funding will be bigger, then the neglectedness is smaller. If, instead, you think that’s because the cost is smaller (C = 109), then, as previously stated, it doesn’t impact the effectiveness of the donation
Sorry, I’m not following. The gain is independent of C, and hence (at given U and F) independent of the expected time period. Assume x is such that cell-based meat enters the market 1 year sooner (i.e. x=F). Accelerating cell-based meat with one year is equally good (spares U=0,1.10^11 animals), whether it is a reduction from 10 to 9 years or 100 to 99 years. Only if C/F would be smaller than a year, accelerating with 1 year would not work.
I totally agree with you, the gain is independent of C.
In your original post, you give a scenario where the cell-based meat enters the market in 100 years, while you seem to believe that an actual estimate would rather be ten years or less. I wondered if this was because you overestimated C, or underestimated F (both affect the timeline, but only F affects the gain)
I now understand that you overestimated C, so this doesn’t affect your prediction about the gain
Thanks for your response!
This makes cell-based meat R&D actually less effective : without discount gain=x⋅UC⋅CF
In term of farm animal suffering, you estimation is U=0.1⋅1011, and C = 1010 . So for each euro invested, you’ll avoid the suffering of CF farm animals. The smaller the time we have to wait before cell-based meat enters the market, the less we should donate.
(This is basically because if cell-based meat enters the market in 10 years, instead of 100, its neglectedness is 10 times smaller, therefore your donation is ten times less effective)
[EDIT]
It actually depends on why you think it will be 10 years instead of 100 : if you think it’s because funding will be bigger, then the neglectedness is smaller. If, instead, you think that’s because the cost is smaller (C = 109), then, as previously stated, it doesn’t impact the effectiveness of the donation
Sorry, I’m not following. The gain is independent of C, and hence (at given U and F) independent of the expected time period. Assume x is such that cell-based meat enters the market 1 year sooner (i.e. x=F). Accelerating cell-based meat with one year is equally good (spares U=0,1.10^11 animals), whether it is a reduction from 10 to 9 years or 100 to 99 years. Only if C/F would be smaller than a year, accelerating with 1 year would not work.
I totally agree with you, the gain is independent of C.
In your original post, you give a scenario where the cell-based meat enters the market in 100 years, while you seem to believe that an actual estimate would rather be ten years or less. I wondered if this was because you overestimated C, or underestimated F (both affect the timeline, but only F affects the gain)
I now understand that you overestimated C, so this doesn’t affect your prediction about the gain
Thanks for clarifying!