This post describes my very rough back-of-the-envelope Fermi-estimate calculation of the cost-effectiveness of cell-based meat R&D, and compares it with traditional animal rights and vegan advocacy campaigns. I only estimate the orders of magnitude, in powers of ten. The results are presented in the table here.
The three measures that I calculated, are:
· The number of vertebrate animal saved per euro, which includes all fish, birds and mammals that are no longer killed by humans for food (i.e. excluding invertebrates and animals not directly killed by humans).
· The number of vertebrate land animals spared per euro, which includes all farm animals that are no longer bred in captivity.
There are 10^11 vertebrate land animals used (i.e. bred and killed) per year by humans. Assume that this number is constant until cell-based meat enters the market. The number of vertebrate animals directly killed by humans for food is an order of magnitude higher: 10^12. The human population counts 10^10 humans, also assumed to be constant, which means an average human uses 10 vertebrate land animals per year and kills 100 vertebrate animals per year. Hence, eating vegan for one year spares 10 animals and also saves 10^0=1 ton CO2-equivalent greenhouse gas emissions.
Global funding for cell-based meat is 10^8 euro per year. This corresponds with 10^2 cell-based meat companies and research units at universities, employing on average 10 employees per organization and 10^5 euro per employee per year.
Assume in the business as usual scenario (where you do not contribute) the same amount of money is funded (by other people) every year until cell-based meat becomes cost-competitive with animal-based meat on the market. In other words, if 108 euro were not invested in cell-based meat this year, the arrival of cell-based meat on the market would be delayed by one year. If 1 euro were invested this year, the arrival on the market will be advanced with 10^-8 year.
Also, assume that the probability that cell-based meat will eliminate animal-based meat and animal farming, is 1⁄10 (or cell-based meat is guaranteed to take 10% of the meat market in the future). This is probably a low estimate.
The above estimates measure the scale (10^11 animals used per year), the solvability (1/10 probability of eliminating animal farming) and neglectedness (10^-8 years faster elimination per extra euro funding). Now the number of animals spared per extra euro donated to cell-based meat R&D can be calculated as the product of scale, solvability and neglectedness: 10^11x10^-1x10^-8=10^2. This means one euro extra funding spares 100 vertebrate land animals. Including captured and aquaculture fish (also fish used for fish meal for farm animals), the number becomes an order 10 higher: 1000 vertebrate animals saved per euro.
As sparing 1 farm animal corresponds with reducing 0,1 ton CO2e, this one euro funding also means a reduction of 10 ton CO2e, the same order of magnitude as the emission by an average human in one year. Used as carbon offsetting, cell-based meat R&D has a price around 0,1 euro per ton CO2e averted. This is much lower than most other carbon offsetting mechanisms.
The above is a low estimate of the impact of cell-based meat R&D. A higher estimate can be obtained as follows. Suppose it takes 10^2 years of research at 10^8 euro of funding per year before cell-based meat becomes competitive with animal-based meat. Suppose 90% of the funding are investments that will eventually be payed back by consumers who buy cell-based meat. The remaining 10% has no return on investment and hence counts as real costs. Hence, the amount of funding costs is 10^7 euro per year. Suppose without cell-based meat, humans will use farm animals for another 10.000 years at 1011 animals per year. The probability that cell-based meat will eliminate animal farming is again 10^-1. In this scenario, contributing 1 euro of funding has an impact of 10^4 years times 10^11 animals per year times 10^-1 probability divided by 10^2 years times 10^7 euro per year, which equals 10^5 vertebrate land animals spared per euro. This sparing of farm animals is again accompanied by avoided greenhouse gas emissions, but most of those avoided emissions would have happened in the far future. Considering only the short term emission reduction for a time period of 10 years, this again comes down to a carbon offsetting price of around 0,1 euro per ton CO2e averted.
Note that the neglectedness is important. Consider for example investments in plant-based meat, which is an order of magnitude larger than investments in cell-based meat, i.e. 10 times less neglected. Suppose plant-based meat also has a probability of 10% of eliminating the animal-meat market (or reducing animal farming by 10%). Then the effectiveness of investments in plant-based meat is an order of magnitude lower than the investments in cell-based meat. Of course, both plant-based and cell-based meat can mutually reinforce each other (i.e. they can be complementary instead substitutable strategies).
Vegan advocacy campaigns calculations
The above impact estimates of cell-based meat R&D can be compared to other measures to reduce animal farming.
Animal Charity Evaluators estimates a cost-effectiveness of around 10 farm animals spared per euro donated to its top recommended charities. This is an order 10 lower than cell-based meat R&D.
Vegan outreach leafletting has an estimated impact of 1 animal spared per euro. I did a personal leafletting study (at the Belgian animal rights organization Bite Back) whereby the leaflets included a survey that asks questions about the reduced consumption of animal products due to the leaflet. Based only on the responses of non-vegans who answered that they reduced their animal product consumption, it requires roughly 1000 leaflets for one equivalent conversion to veganism. This was measured in vegan-equivalents, i.e. in terms of the equivalent reduction of the number of animals used. For example, two meat-eaters who reduce their consumption by 50% count as one vegan. Assume that a respondent remains vegan or sticks to his reduced animal product consumption for 10 years. One vegan-equivalent spares around 10 farm animals per year and one leaflet costs 0,1 euro. That means a cost-effectiveness of 1 spared animal per euro (i.e 10 animals per vegan year times 10 years divided by 1000 leaflets times 0,1 euro per leaflet). This is in the same order of magnitude of othercost-effectivenessestimates of leafletting.
Vegan education (giving presentations about veganism) also has a cost-effectiveness of 1 spared farm animal per euro: 10 participants of a lecture times 1% probability of a participant becoming vegan (based on a small personal study that surveys high school students who participated my vegan education lectures) times 10 years of remaining vegan times 10 animals spared per vegan year divided by 10 euro costs per lecture (if I were to be paid an hourly wage of 10 euro).
We can also estimate the overall cost-effectiveness of animal advocacy campaigns. The US population has an order of magnitude 10^8 people. Suppose meat consumption is decreased by 10% due to people becoming reducetarians, vegetarians or vegans. Suppose 10% of this reduction is due to animal advocacy campaigning. Then the number of US vegan-equivalents for animal welfare reasons is 10^6. The two largest animal advocacy organizations (HSUS and Peta) have a yearly budget of 10^8 euro. If their campaigns caused the reduction in meat consumption, we get a cost-effectiveness of 0,1 farm animals spared per euro donated to those animal charities (10^6 vegans times 10 animals spared per vegan per year divided by 10^8 euro funding per year). This means cell-based meat R&D is about 1000 times more effective than average animal advocacy.
Conclusion
Cell-based meat research and development is roughly 10 times more cost-effective than top recommended effective altruist animal charities and 1000 times more cost-effective than average animal advocacy and vegan campaigning. One euro finding for cell-based meat R&D could spare the lives of 100 farm animals, save the lives of 1000 vertebrate animals and avoid 10 ton CO2-equivalent emissions. That makes cell-based meat R&D probably the most effective measure to reduce anthropogenic animal suffering and greenhouse gas emissions.
You can support cell-based meat R&D by donating to New Harvest.
The extreme cost-effectiveness of cell-based meat R&D
I suspect that cell-based meat research and development could be the most important strategy to protect animal rights and improve animal welfare (with a possible exception of research in welfare biology to improve wild animal welfare), and could strongly reduce climate change.
This post describes my very rough back-of-the-envelope Fermi-estimate calculation of the cost-effectiveness of cell-based meat R&D, and compares it with traditional animal rights and vegan advocacy campaigns. I only estimate the orders of magnitude, in powers of ten. The results are presented in the table here.
The three measures that I calculated, are:
· The number of vertebrate animal saved per euro, which includes all fish, birds and mammals that are no longer killed by humans for food (i.e. excluding invertebrates and animals not directly killed by humans).
· The number of vertebrate land animals spared per euro, which includes all farm animals that are no longer bred in captivity.
· Ton CO2e emissions avoided, which includes all anthropogenic greenhouse gases that are no longer emitted, measured in CO2-equivalents (excluding the carbon capture and storage capacity of reforested farmland).
Cell-based meat R&D calculation
There are 10^11 vertebrate land animals used (i.e. bred and killed) per year by humans. Assume that this number is constant until cell-based meat enters the market. The number of vertebrate animals directly killed by humans for food is an order of magnitude higher: 10^12. The human population counts 10^10 humans, also assumed to be constant, which means an average human uses 10 vertebrate land animals per year and kills 100 vertebrate animals per year. Hence, eating vegan for one year spares 10 animals and also saves 10^0=1 ton CO2-equivalent greenhouse gas emissions.
Global funding for cell-based meat is 10^8 euro per year. This corresponds with 10^2 cell-based meat companies and research units at universities, employing on average 10 employees per organization and 10^5 euro per employee per year.
Assume in the business as usual scenario (where you do not contribute) the same amount of money is funded (by other people) every year until cell-based meat becomes cost-competitive with animal-based meat on the market. In other words, if 108 euro were not invested in cell-based meat this year, the arrival of cell-based meat on the market would be delayed by one year. If 1 euro were invested this year, the arrival on the market will be advanced with 10^-8 year.
Also, assume that the probability that cell-based meat will eliminate animal-based meat and animal farming, is 1⁄10 (or cell-based meat is guaranteed to take 10% of the meat market in the future). This is probably a low estimate.
The above estimates measure the scale (10^11 animals used per year), the solvability (1/10 probability of eliminating animal farming) and neglectedness (10^-8 years faster elimination per extra euro funding). Now the number of animals spared per extra euro donated to cell-based meat R&D can be calculated as the product of scale, solvability and neglectedness: 10^11x10^-1x10^-8=10^2. This means one euro extra funding spares 100 vertebrate land animals. Including captured and aquaculture fish (also fish used for fish meal for farm animals), the number becomes an order 10 higher: 1000 vertebrate animals saved per euro.
As sparing 1 farm animal corresponds with reducing 0,1 ton CO2e, this one euro funding also means a reduction of 10 ton CO2e, the same order of magnitude as the emission by an average human in one year. Used as carbon offsetting, cell-based meat R&D has a price around 0,1 euro per ton CO2e averted. This is much lower than most other carbon offsetting mechanisms.
The above is a low estimate of the impact of cell-based meat R&D. A higher estimate can be obtained as follows. Suppose it takes 10^2 years of research at 10^8 euro of funding per year before cell-based meat becomes competitive with animal-based meat. Suppose 90% of the funding are investments that will eventually be payed back by consumers who buy cell-based meat. The remaining 10% has no return on investment and hence counts as real costs. Hence, the amount of funding costs is 10^7 euro per year. Suppose without cell-based meat, humans will use farm animals for another 10.000 years at 1011 animals per year. The probability that cell-based meat will eliminate animal farming is again 10^-1. In this scenario, contributing 1 euro of funding has an impact of 10^4 years times 10^11 animals per year times 10^-1 probability divided by 10^2 years times 10^7 euro per year, which equals 10^5 vertebrate land animals spared per euro. This sparing of farm animals is again accompanied by avoided greenhouse gas emissions, but most of those avoided emissions would have happened in the far future. Considering only the short term emission reduction for a time period of 10 years, this again comes down to a carbon offsetting price of around 0,1 euro per ton CO2e averted.
Note that the neglectedness is important. Consider for example investments in plant-based meat, which is an order of magnitude larger than investments in cell-based meat, i.e. 10 times less neglected. Suppose plant-based meat also has a probability of 10% of eliminating the animal-meat market (or reducing animal farming by 10%). Then the effectiveness of investments in plant-based meat is an order of magnitude lower than the investments in cell-based meat. Of course, both plant-based and cell-based meat can mutually reinforce each other (i.e. they can be complementary instead substitutable strategies).
Vegan advocacy campaigns calculations
The above impact estimates of cell-based meat R&D can be compared to other measures to reduce animal farming.
Animal Charity Evaluators estimates a cost-effectiveness of around 10 farm animals spared per euro donated to its top recommended charities. This is an order 10 lower than cell-based meat R&D.
Vegan outreach leafletting has an estimated impact of 1 animal spared per euro. I did a personal leafletting study (at the Belgian animal rights organization Bite Back) whereby the leaflets included a survey that asks questions about the reduced consumption of animal products due to the leaflet. Based only on the responses of non-vegans who answered that they reduced their animal product consumption, it requires roughly 1000 leaflets for one equivalent conversion to veganism. This was measured in vegan-equivalents, i.e. in terms of the equivalent reduction of the number of animals used. For example, two meat-eaters who reduce their consumption by 50% count as one vegan. Assume that a respondent remains vegan or sticks to his reduced animal product consumption for 10 years. One vegan-equivalent spares around 10 farm animals per year and one leaflet costs 0,1 euro. That means a cost-effectiveness of 1 spared animal per euro (i.e 10 animals per vegan year times 10 years divided by 1000 leaflets times 0,1 euro per leaflet). This is in the same order of magnitude of other cost-effectiveness estimates of leafletting.
Vegan education (giving presentations about veganism) also has a cost-effectiveness of 1 spared farm animal per euro: 10 participants of a lecture times 1% probability of a participant becoming vegan (based on a small personal study that surveys high school students who participated my vegan education lectures) times 10 years of remaining vegan times 10 animals spared per vegan year divided by 10 euro costs per lecture (if I were to be paid an hourly wage of 10 euro).
We can also estimate the overall cost-effectiveness of animal advocacy campaigns. The US population has an order of magnitude 10^8 people. Suppose meat consumption is decreased by 10% due to people becoming reducetarians, vegetarians or vegans. Suppose 10% of this reduction is due to animal advocacy campaigning. Then the number of US vegan-equivalents for animal welfare reasons is 10^6. The two largest animal advocacy organizations (HSUS and Peta) have a yearly budget of 10^8 euro. If their campaigns caused the reduction in meat consumption, we get a cost-effectiveness of 0,1 farm animals spared per euro donated to those animal charities (10^6 vegans times 10 animals spared per vegan per year divided by 10^8 euro funding per year). This means cell-based meat R&D is about 1000 times more effective than average animal advocacy.
Conclusion
Cell-based meat research and development is roughly 10 times more cost-effective than top recommended effective altruist animal charities and 1000 times more cost-effective than average animal advocacy and vegan campaigning. One euro finding for cell-based meat R&D could spare the lives of 100 farm animals, save the lives of 1000 vertebrate animals and avoid 10 ton CO2-equivalent emissions. That makes cell-based meat R&D probably the most effective measure to reduce anthropogenic animal suffering and greenhouse gas emissions.
You can support cell-based meat R&D by donating to New Harvest.