Thanks for the write-up. I upvoted because I think it lays out the arguments clearly and explains them well but I disagree with most of the arguments.
I will write most of this in more detail in a future post (some of them can already be seen here) but here are the main disagreements: 1. We can decouple way more than we currently do: more value will be created through less resource-intensive activities, e.g. software, services, etc. Absolute decoupling seems impossible but I don’t think the current rate of decoupling is anywhere near the realistically achievable limits. 2. Renewables are the main bottleneck: The energy per dollar for solar has decreased exponentially over the last 10 years and there is no reason it should not continue; the same is true for lithium-ion batteries. The technology is ready (or will be within the next decade) and it seems to be mostly a question of political will to change. Once renewable energy is abundant most other problems seem to be much easier to solve, e.g. protecting biodiversity if you don’t need the space for coal mines. 3. The global economy is interconnected: It is very hard, if not impossible to stop growth in developed countries but keep growth in developing countries. Degrowth in the West most likely implies decreased growth in the developing world, which I oppose. 4. More growth is required for a stable future path: Most renewable technology has been developed by rich nations. Most efficiency gains in tech have been downstream effects from R&D in rich nations. If we want to get 1000x more efficient green tech, it will likely come from rich countries that pay their scientists from public taxes. In general, many solutions to problems pointed out by degrowthers require a lot of money. A bigger pie means a bigger public R&D budget and more money to spend, e.g. on better education or national parks. 5. My vision of the future: I don’t think we can scale to infinite value with finite resources. There clearly is a limit at some point but I don’t think we have reached it yet. I want to strive toward a world that could host 100B inhabitants powered by solar, hydrogen and nuclear. People live in dense cities with good public transport. People mostly stopped eating meat and vegetarianism drastically reduced land use and problems of pollution. Many problems that exist in the West today are solved in the future, e.g. the infant death rate is not 0.001 (like it is today in the West) it should be 0! I just can’t see why the current level of GDP is optimal for some reason and I think we should aim to grow GDP AND solve other problems (and the two are not mutually exclusive or GDP is even necessary for the other). 6. GDP growth in the west is not a major goal for EA anyway: I agree with the fact that GDP growth in already rich countries should not be a major goal for EAs. We should aim to solve global problems, many of which are in less developed countries and we should prevent x- and s-risks. Most of these goals are mostly independent of GDP in rich countries.However, on the margins, I think more GDP in rich countries probably makes it easier to achieve EA goals, e.g. more GDP means a bigger budget for pandemic prevention. Furthermore, I think it would be bad for EAs to support degrowth both because it seems less relevant than other problems and because I just don’t think the arguments are true (as described above).
I will publish a slightly more details version of the above arguments and link it here so that you can engage with them more properly. Thank you, once again, for presenting the arguments for degrowth in this clear and non-judgemental way such that people can engage with them on the object level.
Once renewable energy is abundant most other problems seem to be much easier to solve, e.g. protecting biodiversity if you don’t need the space for coal mines.
This may be a nitpick but actually the most popular renewables (e.g. wind and solar) need so much land that they could very feasibly be/already are a threat to biodiversity and land use. See image below for an illustration, from this work from TerraPraxis.
Land Area Requirements for Meeting Current UK Oil Consumption from Hydrogen: Comparing area required to replace the UK’s current oil consumption with hydrogen generated from either wind, solar, or advanced heat sources
It is very hard, if not impossible to stop growth in developed countries but keep growth in developing countries. Degrowth in the West most likely implies decreased growth in the developing world, which I oppose.
This seems like a big claim—what are you basing this on? I mean the Industrial Revolution led to the UK/Global North growing very fast without help from more developed nations so I’m not sure why less developed nations couldn’t also develop quickly without growth in the west.
Also I think one of the stronger arguments of the post above is about resource use/other environmental constraints besides carbon emissions. It also seems like you agree that this might pose a problem for long-term/sustained economic growth? IMO this could be a consideration large enough to sway the argument in either direction.
I agree that wind and solar could lead to more land use if we base our calculations on the efficiency of current or previous solar capabilities. But under the current trend, land use will decrease exponentially as capabilities increase exponentially, so I don’t expect it to be a real problem.
I don’t have a full economic model for my claim that the world economy is interconnected but stuff like the supply-chain crisis, or Evergreen provided some evidence in this direction. I think this was not true at the time of the industrial revolution but is now.
I think it really depends on which kind of environmental constraint we talk about and also how strong the link of that is to GDP in rich nations. If there is a convincing case, I’d obviously change my mind, but for now, I feel like we can address all problems without having to decrease GDP.
“But under the current trend, land use will decrease exponentially as capabilities increase exponentially”
Most of the cost reductions in wind and solar to date are reductions in producing roughly similar technology more cheaply (somewhat less true in the case of wind and larger turbines), so I am not sure where your view for definite lower land requirements comes from (I think there is some argument for this being possible via next-gen renewables, but not from the perspective of past cost-reduction progress).
Thanks for the write-up. I upvoted because I think it lays out the arguments clearly and explains them well but I disagree with most of the arguments.
I will write most of this in more detail in a future post (some of them can already be seen here) but here are the main disagreements:
1. We can decouple way more than we currently do: more value will be created through less resource-intensive activities, e.g. software, services, etc. Absolute decoupling seems impossible but I don’t think the current rate of decoupling is anywhere near the realistically achievable limits.
2. Renewables are the main bottleneck: The energy per dollar for solar has decreased exponentially over the last 10 years and there is no reason it should not continue; the same is true for lithium-ion batteries. The technology is ready (or will be within the next decade) and it seems to be mostly a question of political will to change. Once renewable energy is abundant most other problems seem to be much easier to solve, e.g. protecting biodiversity if you don’t need the space for coal mines.
3. The global economy is interconnected: It is very hard, if not impossible to stop growth in developed countries but keep growth in developing countries. Degrowth in the West most likely implies decreased growth in the developing world, which I oppose.
4. More growth is required for a stable future path: Most renewable technology has been developed by rich nations. Most efficiency gains in tech have been downstream effects from R&D in rich nations. If we want to get 1000x more efficient green tech, it will likely come from rich countries that pay their scientists from public taxes. In general, many solutions to problems pointed out by degrowthers require a lot of money. A bigger pie means a bigger public R&D budget and more money to spend, e.g. on better education or national parks.
5. My vision of the future: I don’t think we can scale to infinite value with finite resources. There clearly is a limit at some point but I don’t think we have reached it yet. I want to strive toward a world that could host 100B inhabitants powered by solar, hydrogen and nuclear. People live in dense cities with good public transport. People mostly stopped eating meat and vegetarianism drastically reduced land use and problems of pollution. Many problems that exist in the West today are solved in the future, e.g. the infant death rate is not 0.001 (like it is today in the West) it should be 0! I just can’t see why the current level of GDP is optimal for some reason and I think we should aim to grow GDP AND solve other problems (and the two are not mutually exclusive or GDP is even necessary for the other).
6. GDP growth in the west is not a major goal for EA anyway: I agree with the fact that GDP growth in already rich countries should not be a major goal for EAs. We should aim to solve global problems, many of which are in less developed countries and we should prevent x- and s-risks. Most of these goals are mostly independent of GDP in rich countries. However, on the margins, I think more GDP in rich countries probably makes it easier to achieve EA goals, e.g. more GDP means a bigger budget for pandemic prevention. Furthermore, I think it would be bad for EAs to support degrowth both because it seems less relevant than other problems and because I just don’t think the arguments are true (as described above).
I will publish a slightly more details version of the above arguments and link it here so that you can engage with them more properly. Thank you, once again, for presenting the arguments for degrowth in this clear and non-judgemental way such that people can engage with them on the object level.
A couple of small points:
This may be a nitpick but actually the most popular renewables (e.g. wind and solar) need so much land that they could very feasibly be/already are a threat to biodiversity and land use. See image below for an illustration, from this work from TerraPraxis.
This seems like a big claim—what are you basing this on? I mean the Industrial Revolution led to the UK/Global North growing very fast without help from more developed nations so I’m not sure why less developed nations couldn’t also develop quickly without growth in the west.
Also I think one of the stronger arguments of the post above is about resource use/other environmental constraints besides carbon emissions. It also seems like you agree that this might pose a problem for long-term/sustained economic growth? IMO this could be a consideration large enough to sway the argument in either direction.
I agree that wind and solar could lead to more land use if we base our calculations on the efficiency of current or previous solar capabilities. But under the current trend, land use will decrease exponentially as capabilities increase exponentially, so I don’t expect it to be a real problem.
I don’t have a full economic model for my claim that the world economy is interconnected but stuff like the supply-chain crisis, or Evergreen provided some evidence in this direction. I think this was not true at the time of the industrial revolution but is now.
I think it really depends on which kind of environmental constraint we talk about and also how strong the link of that is to GDP in rich nations. If there is a convincing case, I’d obviously change my mind, but for now, I feel like we can address all problems without having to decrease GDP.
“But under the current trend, land use will decrease exponentially as capabilities increase exponentially”
Most of the cost reductions in wind and solar to date are reductions in producing roughly similar technology more cheaply (somewhat less true in the case of wind and larger turbines), so I am not sure where your view for definite lower land requirements comes from (I think there is some argument for this being possible via next-gen renewables, but not from the perspective of past cost-reduction progress).
OK, thanks for the clarification. Didn’t know that.