Thanks for looking through our work and for your comment, Deborah. We recognise that different parts of our models are often interrelated in practice. In particular, we’re concerned about the problem of correlations between interventions too, as we flag here. This is an important area for further work. That being said, it isn’t clear that the cases you have in mind are problems for our tools. If you think, for instance, that environmental interventions are particularly good because they have additional (quantifiable or non-quantifiable) benefits, you can update the tool inputs (including the cause or project name) to reflect that and increase the estimated impact of that particular cause area. We certainly don’t mean to imply that climate change is an unimportant issue.
Thanks for looking through our work and for your comment, Deborah. We recognise that different parts of our models are often interrelated in practice. In particular, we’re concerned about the problem of correlations between interventions too, as we flag here. This is an important area for further work. That being said, it isn’t clear that the cases you have in mind are problems for our tools. If you think, for instance, that environmental interventions are particularly good because they have additional (quantifiable or non-quantifiable) benefits, you can update the tool inputs (including the cause or project name) to reflect that and increase the estimated impact of that particular cause area. We certainly don’t mean to imply that climate change is an unimportant issue.