I agree that research organizations of the type that we see are particularly difficult to grow quickly.
My point is that we could theoretically focus more on other kinds of organizations that are more scalable. I could imagine there being more scalable engineering-heavy or marketing-heavy paths to impact on these problems. For example, setting up an engineering/data organization to manage information and metrics about bio risks. These organizations might have rather high upfront costs (and marginal costs), but are ones where I could see investing $10-100mil/year if we wanted.
Right now it seems like our solution to most problems is “try to solve it with experienced researchers”, which seems to be a tool we have a strong comparative advantage in, but not the only tool in the possible toolbox. It is a tool that’s very hard to scale, as you note (I know of almost no organizations that have done this well).
Separately,
The other way to scale up is to get people to skill-up in areas with more scalable mentorship: e.g. just work on any AI research topic for your PhD where you can get good mentorship, then go work at an org doing more impactful work once you graduate. I think this is probably our best bet to absorb most additional junior talent right now. This may beat the 10-30% figure I gave, but we’d still have to wait 3-5 years before the talent comes on tap unfortunately.
I just want to flag that I think I agree, but also feel pretty bad about this. I get the impression that for AI many of the grad school programs are decent enough, but for other fields (philosophy, some of Econ, things bio related), grad school can be quite long winded, demotivating, occasionally the cause of serious long term psychological problems, and often distracting or actively harmful for alignment. It definitely feels like we should eventually be able to do better, but it might be a while.
I agree that research organizations of the type that we see are particularly difficult to grow quickly.
My point is that we could theoretically focus more on other kinds of organizations that are more scalable. I could imagine there being more scalable engineering-heavy or marketing-heavy paths to impact on these problems. For example, setting up an engineering/data organization to manage information and metrics about bio risks. These organizations might have rather high upfront costs (and marginal costs), but are ones where I could see investing $10-100mil/year if we wanted.
Right now it seems like our solution to most problems is “try to solve it with experienced researchers”, which seems to be a tool we have a strong comparative advantage in, but not the only tool in the possible toolbox. It is a tool that’s very hard to scale, as you note (I know of almost no organizations that have done this well).
Separately,
I just want to flag that I think I agree, but also feel pretty bad about this. I get the impression that for AI many of the grad school programs are decent enough, but for other fields (philosophy, some of Econ, things bio related), grad school can be quite long winded, demotivating, occasionally the cause of serious long term psychological problems, and often distracting or actively harmful for alignment. It definitely feels like we should eventually be able to do better, but it might be a while.