I think you’re right that we don’t provide a really detailed model of the far future and we underestimate* expected value as a result. It’s hard to know how to model the hypothetical technologies we’ve thought of, let alone the technologies that we haven’t. These are the kinds of things you have to take into consideration when applying the model, and we don’t endorse the outputs as definitive, even once you’ve tailored the parameters to your own views.
That said, I do think the model has a greater flexibility than you suggest. Some of these options are hidden by default, because they aren’t relevant given the cutoff year of 3023 we default to. You can see them by extending that year far out. Our model uses parameters for expansion speed and population per star. It also lets you set the density of stars. If you think that we’ll expand and near the speed of light and colonize every brown dwarf, you can set that. If you think each star will host a quintillion minds, you can set that too. We don’t try to handle relative welfare levels for future beings; we just assume their welfare is the same as ours. This is probably pessimistic. We considered changing this, but it actually doesn’t make a huge difference to the overall shape of the results, so we didn’t consider it a priority. The same goes for clock speed differences. If you want to represent this within the model as written, you can just inflate the population per star. What the model can’t do is capture non-cubic (and non-static) population growth rates. It also breaks down in the real far future, and we don’t model the end of the universe.
Perhaps you object to parameter settings we chose as defaults. Whatever defaults we picked would be controversial. In response, let me just stress that they’re not intended as our answers to these questions. They are just a flexible starting point for people to explore.
* My guess is that the EV of surviving to the far future is infinite, if it isn’t undefined.
Thanks. I respect that the model is flexible and that it doesn’t attempt to answer all questions. But at the end of the day, the model will be used to “help assess potential research projects at Rethink Priorities” and I fear it will undervalue longterm-focused stuff by a factor of >10^20.
AFAICT, the model also doesn’t consider far future effects of animal welfare and GHD interventions. And against relative ratios like >10^20 between x-risk and neartermist interventions, see:
(I agree that the actual ratio isn’t like 10^20. In my view this is mostly because of the long-term effects of neartermist stuff,* which the model doesn’t consider, so my criticism of the model stands. Maybe I should have said “undervalue longterm-focused stuff by a factor of >10^20 relative to the component of neartermist stuff that the model considers.”)
*Setting aside causing others to change prioritization, which it feels wrong for this model to consider.
I think you’re right that we don’t provide a really detailed model of the far future and we underestimate* expected value as a result. It’s hard to know how to model the hypothetical technologies we’ve thought of, let alone the technologies that we haven’t. These are the kinds of things you have to take into consideration when applying the model, and we don’t endorse the outputs as definitive, even once you’ve tailored the parameters to your own views.
That said, I do think the model has a greater flexibility than you suggest. Some of these options are hidden by default, because they aren’t relevant given the cutoff year of 3023 we default to. You can see them by extending that year far out. Our model uses parameters for expansion speed and population per star. It also lets you set the density of stars. If you think that we’ll expand and near the speed of light and colonize every brown dwarf, you can set that. If you think each star will host a quintillion minds, you can set that too. We don’t try to handle relative welfare levels for future beings; we just assume their welfare is the same as ours. This is probably pessimistic. We considered changing this, but it actually doesn’t make a huge difference to the overall shape of the results, so we didn’t consider it a priority. The same goes for clock speed differences. If you want to represent this within the model as written, you can just inflate the population per star. What the model can’t do is capture non-cubic (and non-static) population growth rates. It also breaks down in the real far future, and we don’t model the end of the universe.
Perhaps you object to parameter settings we chose as defaults. Whatever defaults we picked would be controversial. In response, let me just stress that they’re not intended as our answers to these questions. They are just a flexible starting point for people to explore.
* My guess is that the EV of surviving to the far future is infinite, if it isn’t undefined.
Thanks. I respect that the model is flexible and that it doesn’t attempt to answer all questions. But at the end of the day, the model will be used to “help assess potential research projects at Rethink Priorities” and I fear it will undervalue longterm-focused stuff by a factor of >10^20.
I believe Marcus and Peter will release something before long discussing how they actually think about prioritization decisions.
AFAICT, the model also doesn’t consider far future effects of animal welfare and GHD interventions. And against relative ratios like >10^20 between x-risk and neartermist interventions, see:
https://reducing-suffering.org/why-charities-dont-differ-astronomically-in-cost-effectiveness/
https://longtermrisk.org/how-the-simulation-argument-dampens-future-fanaticism
(I agree that the actual ratio isn’t like 10^20. In my view this is mostly because of the long-term effects of neartermist stuff,* which the model doesn’t consider, so my criticism of the model stands. Maybe I should have said “undervalue longterm-focused stuff by a factor of >10^20 relative to the component of neartermist stuff that the model considers.”)
*Setting aside causing others to change prioritization, which it feels wrong for this model to consider.