RE #3, the company’s website includes a helpful infographic. It sounds like they added an optogenetic control on the Z chromosome (I couldn’t find anything more specific than that). The breeding hens contain one altered and one normal Z chromosome, and the breeding roosters are normal. Female chicks receive a normal W from their mother and a normal Z from their father and are “wild-type”, but male chicks receive an edited Z chromosome from their mother and a normal Z chromosome from their father. Shining blue light on all the eggs “deactivates” the edited Z chromosome in male eggs, disrupting development when the embryo is “only two layers of cells.” Maybe we can find out more about how the optogenetic control works if someone with paid Academia.edu access searches for Dr. Yuval Cinnamon’s papers? I tried a title search and didn’t find anything.
RE #3, the company’s website includes a helpful infographic. It sounds like they added an optogenetic control on the Z chromosome (I couldn’t find anything more specific than that). The breeding hens contain one altered and one normal Z chromosome, and the breeding roosters are normal. Female chicks receive a normal W from their mother and a normal Z from their father and are “wild-type”, but male chicks receive an edited Z chromosome from their mother and a normal Z chromosome from their father. Shining blue light on all the eggs “deactivates” the edited Z chromosome in male eggs, disrupting development when the embryo is “only two layers of cells.” Maybe we can find out more about how the optogenetic control works if someone with paid Academia.edu access searches for Dr. Yuval Cinnamon’s papers? I tried a title search and didn’t find anything.