I think this model is kind of misleading, and that the original astronomical waste argument is still strong. It seems to me that a ton of the work in this model is being done by the assumption of constant risk, even in post-peril worlds. I think this is pretty strange. Here are some brief comments:
If you’re talking about the probability of a universal quantifier, such as “for all humans x, x will die”, then it seems really weird to say that this remains constant, even when the thing you’re quantifying over grows larger.
For instance, it seems clear that if there were only 100 humans, the probability of x-risk would be much higher than if there were 10^6 humans. So it seems like if there are 10^20 humans, it should be harder to cause extinction than 10^10 humans.
Assuming constant risk has the implication that human extinction is guaranteed to happen at some point in the future, which puts sharp bounds on the goodness of existential risk reduction.
It’s not that hard to get exponentially decreasing probability on universal quantifiers if you assume independence in survival amongst some “unit” of humanity. In computing applications, it’s not that hard to drive down the probability of error exponentially in the resources allocated, because each unit of resource can ~halve the probability of error. Naively, each human doesn’t want to die, so there are # humans rolls for surviving/solving x-risk.
It seems like the probability of x-risk ought to be inversely proportional to the current estimated amount of value at stake. This seems to follow if you assume that civilization acts as a “value maximizer” and it’s not that hard to reduce x-risk. Haven’t worked it out, so wouldn’t be surprised if I was making some basic error here.
Generally, it seems like most of the risk is going to come from worlds where the chance of extinction isn’t actually a universal quantifier, and there’s some correlation amongst seemingly independent roles for survival. In particularly bad cases, humans go extinct if there exists someone that wants to destroy the universe, so we actually see an extremely rapid increasing probability of extinction as we get more humans. These worlds would require extremely strong coordination and governance solutions.
These worlds are also slightly physically impossible because parts of humanity will rapidly become causally isolated from each other. I don’t know enough cosmology to have an intuition for which way the functional form will ultimately go.
Generally, it seems like the naive view is that as humans get richer/smarter, they’ll allocate more and more resources towards not dying. At equilibrium, it seems reasonable to first-order-assume we’ll drive existential risk down until the marginal cost equals the marginal benefit, so the key question is how this equilibrium behaves. It seems like my guess is that it will depend heavily on the total amount of value available in the future, determined by physical constraints (and potentially more galaxy-brained considerations).
This view seems to allow you to recover more the more naive astronomical waste perspective.
This makes me feel like the model makes kind of strong assumptions about the amount it will ultimately cost to drive down existential risk. E.g. you seem to imply that rl = 0.0001 is small, but an independent chance that large each century suggests that the probability humanity survives for ~10^10 years is ~0. This feels quite absurd to me.
The sentence: “Note that for the Pessimist, this is a reduction of 200,000%”, but humans routinely reduce the probabilities of failures by more than 200,000% via engineering efforts and produce highly complex and artifacts like computers, airplanes, rockets, satellites, etc. It feels like you should naively expect “breaking” human civilization to be harder than breaking an airplane, especially when civilization is actively trying to ensure that it doesn’t go extinct.
Also, you seem to assume each century has some constant value v eventually, which seems reasonable to me, but the implication “Warming (slightly) on short-termist cause areas” relies on an assumption that the current century is close to value v, when it seems like even pretty naive bounds (e.g. percent of sun’s energy), suggest that the current century is not even within a factor of 10^9 of the long-run value-per-century humanity could reach.
Assuming that value grows quadratically seems also quite weird, because of analysis like eternity in 6 hours, which seems to imply that a resource-maximizing civilization will undergo a period of incredibly rapid expansion to achieve per-century rates of value much higher than the current century, and then have nowhere else to go. A better model from my perspective is logistic growth of value, with the upper bound given by some weak proxy like “suppose that value is linear in the amount of energy a civilization uses, then take the total amount of value in the year 2020”, with the ultimate unit being “value in 2020″. This would produce much higher numbers, and give a more intuitive sense of “astronomical waste.”
I like the process of proposing concrete models for things as a substrate for disagreement, and I appreciate that you wrote this. It feels much better to articulate objections like “I don’t think this particular parameter should be constant in your model” than to have abstract arguments. I also like how it’s now more clear that if you do believe that risk in post-peril worlds is constant, then the argument for longtermism is much weaker (although I think still quite strong because of my comments about v).
yes, thanks!