Thanks for clarifying! I have doubts about that pathway. The systematic review of Imamura 2016 found one serving/day of:
SSB was associated with 18 % and 13 % greater incidence of type 2 diabetes before and after adjusting for adiposity.
Artificially sweetened beverages (ASB) was associated with 25 % and 8 % greater incidence of type 2 diabetes before and after adjusting for adiposity.
The glycemic load of ASB is zero (or close), so them being associated with higher incidence of type 2 diabetes is evidence against the pathway you mentioned. It is also interesting that controlling for adiposity is much more relevant for ASB (it reduces the effect by 2⁄3 instead of the 1⁄3 of SSB). I guess because people who are obese are more likely to turn to ASB.
“For artificially sweetened beverages, publication bias and residual confounding were indicated”, but “if publication bias was indicated, we adjusted summary estimates for the bias”. It looks like adjusting for adiposity can be tricky:
Adiposity is likely to confound an association of beverage consumption with type 2 diabetes, particularly in research on artificially sweetened beverages.681011 Because of imperfect measurement of adiposity in an epidemiological study,36 adjustment for adiposity was likely to be insufficient, as discussed previously.363237–41 Thus, to assess if such residual confounding would be substantial, we performed simulation analysis to examine the influence of the bias.42
In addition, to really see if the glycemic load pathway is doing the work, one should control for fat consumption (which I think is what is mostly doing the work). Imamura 2016 does not seem to agree that ASB is better than SSB to prevent diabetes:
None the less, both artificially sweetened beverages and fruit juice were unlikely to be healthy alternatives to sugar sweetened beverages for the prevention of type 2 diabetes.
If sugar was doing the work, they would have to strongly favour ASB over SSB? Have you found studies controlling for both adiposity and fat intake (for the pathway I described, it does not matter whether the fat in the bloodstream comes from our body or food, and therefore one needs to control for both)?
I would argue against the interpretation that the SSB-ASB evidence is evidence against the glycemic pathway: (a) as you and the authors note, controlling for adiposity is hard; and (b) even assuming the control was perfect, the fact that post-control, SSBs see a 13% greater incidence for diabetes and ASBs see a 8% greater incidence for diabetes doesn’t contradict the idea that sugar in itself is a significant risk factor via the glycemic pathway—hence (at the very least) the 5% delta, even assuming that the remaining 8% is explained by something that is common to both SSBs/ASBs (doubtful; again, probability just adiposity).
Separately, I would again emphasize the evidence for the glycemic pathway from other studies looking at insulin resistance—which gives us a much clearer sense of the biochemical/physiological basis of the effect.
I think the delta would be lower if they controlled for fat intake. Have you found studies controlling for both adiposity and fat intake?
Separately, I would again emphasize the evidence for the glycemic pathway from other studies looking at insulin resistance—which gives us a much clearer sense of the biochemical/physiological basis of the effect.
Could you link to the main studies informing your views here?
Thanks for clarifying! I have doubts about that pathway. The systematic review of Imamura 2016 found one serving/day of:
SSB was associated with 18 % and 13 % greater incidence of type 2 diabetes before and after adjusting for adiposity.
Artificially sweetened beverages (ASB) was associated with 25 % and 8 % greater incidence of type 2 diabetes before and after adjusting for adiposity.
The glycemic load of ASB is zero (or close), so them being associated with higher incidence of type 2 diabetes is evidence against the pathway you mentioned. It is also interesting that controlling for adiposity is much more relevant for ASB (it reduces the effect by 2⁄3 instead of the 1⁄3 of SSB). I guess because people who are obese are more likely to turn to ASB.
“For artificially sweetened beverages, publication bias and residual confounding were indicated”, but “if publication bias was indicated, we adjusted summary estimates for the bias”. It looks like adjusting for adiposity can be tricky:
In addition, to really see if the glycemic load pathway is doing the work, one should control for fat consumption (which I think is what is mostly doing the work). Imamura 2016 does not seem to agree that ASB is better than SSB to prevent diabetes:
If sugar was doing the work, they would have to strongly favour ASB over SSB? Have you found studies controlling for both adiposity and fat intake (for the pathway I described, it does not matter whether the fat in the bloodstream comes from our body or food, and therefore one needs to control for both)?
I would argue against the interpretation that the SSB-ASB evidence is evidence against the glycemic pathway: (a) as you and the authors note, controlling for adiposity is hard; and (b) even assuming the control was perfect, the fact that post-control, SSBs see a 13% greater incidence for diabetes and ASBs see a 8% greater incidence for diabetes doesn’t contradict the idea that sugar in itself is a significant risk factor via the glycemic pathway—hence (at the very least) the 5% delta, even assuming that the remaining 8% is explained by something that is common to both SSBs/ASBs (doubtful; again, probability just adiposity).
Separately, I would again emphasize the evidence for the glycemic pathway from other studies looking at insulin resistance—which gives us a much clearer sense of the biochemical/physiological basis of the effect.
I think the delta would be lower if they controlled for fat intake. Have you found studies controlling for both adiposity and fat intake?
Could you link to the main studies informing your views here?