The probability of an interval is the area under the graph! Currently, it’s set to 0% that any of the disaster scenarios kill < 1 people. I agree this is probably incorrect, but I didn’t want to make any other assumptions about points they didn’t specify. Here’s a version that explicitly states that.
The probability of an interval is the area under the graph!
It’s not obvious to me how to interpret this without specifying the units on the y axis (percentage points?), and when the x axis is logarithmic and in units of numbers of deaths. E.g., for the probability of superintelligent AI killing between 1 and 10 people, should I multiply ~2.5 (height along x axis) by ~10 (length along y axis) and get 25%? But then I’ll often be multiplying the height along the x axis by more than 100 and getting insane probabilities?
So at the moment I can make sense of which events are seen as more likely than other ones, but not the absolute likelihood they’re assigned.
I may be making some basic mistake. Also feel free to point me to a pre-written guide to interpreting Elicit graphs.
The probability of an interval is the area under the graph! Currently, it’s set to 0% that any of the disaster scenarios kill < 1 people. I agree this is probably incorrect, but I didn’t want to make any other assumptions about points they didn’t specify. Here’s a version that explicitly states that.
It’s not obvious to me how to interpret this without specifying the units on the y axis (percentage points?), and when the x axis is logarithmic and in units of numbers of deaths. E.g., for the probability of superintelligent AI killing between 1 and 10 people, should I multiply ~2.5 (height along x axis) by ~10 (length along y axis) and get 25%? But then I’ll often be multiplying the height along the x axis by more than 100 and getting insane probabilities?
So at the moment I can make sense of which events are seen as more likely than other ones, but not the absolute likelihood they’re assigned.
I may be making some basic mistake. Also feel free to point me to a pre-written guide to interpreting Elicit graphs.