In brief, we used Harrer et al.’s (2021) R library and their function for the power of a meta-analysis. With this, we computed the power we had to detect an initial effect (the intercept) of .08 SDs which was 97.88%. This uses the average sample sizes and the number of effect sizes.
We selected .08 as our smallest effect size of interest based on the results from our ‘optimistic’ model (see the Appendix A1)—which assumes the effect of deworming cannot be negative (not a model we endorse). The initial effect was .04 and the total cost-effectiveness was half that of StrongMinds. So, the effect would need to be twice as large to equal the cost-effectiveness of StrongMinds.
“we had 98% power to detect effect sizes of 0.08 SDs” How did you calculate this? This seems unlikley on a 3 point categorical scale like ths,
In brief, we used Harrer et al.’s (2021) R library and their function for the power of a meta-analysis. With this, we computed the power we had to detect an initial effect (the intercept) of .08 SDs which was 97.88%. This uses the average sample sizes and the number of effect sizes.
We selected .08 as our smallest effect size of interest based on the results from our ‘optimistic’ model (see the Appendix A1)—which assumes the effect of deworming cannot be negative (not a model we endorse). The initial effect was .04 and the total cost-effectiveness was half that of StrongMinds. So, the effect would need to be twice as large to equal the cost-effectiveness of StrongMinds.