Error
Unrecognized LW server error:
Field "fmCrosspost" of type "CrosspostOutput" must have a selection of subfields. Did you mean "fmCrosspost { ... }"?
Unrecognized LW server error:
Field "fmCrosspost" of type "CrosspostOutput" must have a selection of subfields. Did you mean "fmCrosspost { ... }"?
I’ve noticed a slight inaccuracy in this article (I’ve already discussed it with Abraham and he agrees that it is an inaccuracy).
> Global fishmeal production was 15.8 million tonnes in 2014 (FAO 2016). As an example, we might reasonably expect insect meal to replace 25% of global production, or 3.95 million tonnes.
The source does claim that “In 2014, fishmeal production was 15.8 million tonnes” but I am now certain that this claim is misleading because in another place it says “Almost all of the remaining 21 million tonnes was destined for non-food products, of which 76 percent (15.8 million tonnes) was reduced to fishmeal and fish oil in 2014”. This page claims that 15.8Mt of fish were caught to produce 4.7Mt of fishmeal. And other sources like this also claim that fishmeal production is about 5Mt. The question is which number is more relevant. I think it’s the smaller one. Abraham said that the model uses the dry weight of insects, which should be closer to the protein / oil weight than to the total full body weight. I imagine that the conversion ratio between insect dry weight and insect protein is not 1:1 but I don’t know what it is. The guesstimate model assumes that the conversion ratios of fish to fishmeal and the dry insects to insect protein are the same but they are probably not. I think it follows that insects replacing fishmeal would require fewer individuals.
From what I read, insect protein would not be replacing fishmeal, but it would likely be an additive that has some health benefits for fish and allows producers to claim that they are sustainable. I’m not sure it would lead to more sustainability, as they would probably continue to produce as much fishmeal as it’s possible to produce without totally depleting the oceans at an even faster rate (I think fishmeal production has been constant). And fishmeal is likely to remain to be cheaper than insect protein. What insect production might allow is continued growth of fish farming because now the growth might be limited by the amount of available protein feed.
In general, Rethink Priorities has done more research on this topic since this article was written but it’s not published. If anyone is interested in doing anything about insect farming, please contact us, and we can share our new research. There are also some other new sources on this topic, like this report (it’s written by a major investor into insect farming though so might be biased). This and other similar reports predict insect farming to grow really fast.
Finally, note that Rethink Priorities is hiring an Executive Director of the Insect Welfare Project who will see what (if anything) should be done about the welfare issues explained in this article. Please apply if you think you are suitable or share with whoever you think is suitable. And we’ve just hired an entomologist (insect expert) to look into welfare issues and how they could possibly be mitigated.
Ah, this comment is all over the place, but I have little time and I thought that writting an unorganized update would be better than nothing.
Hi Abraham,
This excludes silkworms, right?
Yes correct—just the Insects as Food and Feed industry. Though note these estimates were from 2020 - my best guess is that there are at least 4-7x as many insects farmed by the industry today (mainly because it’s going through a lot of industrialization / scale up, and a bunch of new major factories have opened in the last few years).
Thanks. For reference, Grand View Research forecasted an annual growth of insect protein of 16.9 % from 2024 to 2030, and Meticulous Research determined an annual growth of edible insects of 28.6 % from 2024 to 2033.
Nice—yeah, it wouldn’t surprise me if that period is slower than the last ~5 years, as a lot of the capital that has gone into the space seems like it has been spent, and it doesn’t seem like recent capital inflows have been as high. My 4-7x guess is based on a crude estimate done by Sagar Shah of how much production capacity can be bought with the capital that companies have available to do it, with a delay baked in for construction time.
Thanks for the valuable post. I think it is possible that insects could become competitive with fish meal, and both are high-protein. But I don’t think they could be competitive with low protein feed, because basically you are feeding them low protein feed (animal waste is the possible exception, but that could be fed to non-insects as well). What is the current typical cost per dry kilogram wholesale of insects for feed? When I checked, it was ~$9/kg wholesale, which is far higher than animal feed at ~$0.5/kg. Your source for the two units of feed for one unit of insects did not specify units, so I went to the original, and it looks like it is comparing dry feed and wet animal. This makes sense because if this were based on calories, it sounds too high even if you had ideal circumstances (no diseases, cannibalism, etc.). This is because insects typically cannot synthesize protein, so if they are 50% protein and the feed is 10% protein by calories, maximum conversion efficiency would be 20% even if they emitted no nitrogen in their waste.
An update to this—a study just came out that found black soldier fly larvae replacing up to 30% of fishmeal/fishoil in Siberian Sturgeons is now theoretically more profitable than pure FMFO. Also, there is a new Rabobank report that estimates current prices to be $4-6.5 / kg, dropping to $3/kg by 2030, so it seems like on the fishmeal side, there is a decent chance that 10-15% of diets of at least some fish will be replaced by BSFL or mealworms. (though note Rabobank is a large investor in the space so it’s hard to know to motivations behind the projections).
Thanks for the comment,
I think I agree with everything you’re saying here, and that makes sense on how conversion efficiency would work for insectmeal vs animal feed.
A few points:
It is definitely unclear if insectmeal will be cost-competitive with either fishmeal or grain feed. I think insectmeal as an alternative to fishmeal has a lot more potential for a variety of reasons—I saw a pitch deck to an investor where a company said it was targeting 1 to 1.5 Euro / kg dry weight for black soldier fly larvae fed on animal waste once they scaled up (though it was a pitch deck, so probably optimistic). If producers can actually hit that target, then it seems plausible some fishmeal could be replaced.
I think there is some reason to believe that fisheries, etc., would be actually less willing to pay for insectmeal than fishmeal, since it is new, etc., so the price could need to be even lower than that of fishmeal for insectmeal to take off.
There is a large amount of venture capital going into large scale insect farms right now. It’s possible that could end up subsidizing the cost of insectmeal in the short-term, and drive it down significantly, only for it later to increase if this source of funding goes away.
Thanks for such a report! I was wondering where did you get the annual totals information. Was it the FAO? thanks!
Hi, most of the annual production information came from a combination of market research, industry publications, and estimates I built myself—the first part of the Methods section details this and links to sources when available: https://forum.effectivealtruism.org/posts/ruFmR5oBgqLgTcp2b/insects-raised-for-food-and-feed-global-scale-practices-and#Methods
Thanks for your great work! With respect to “Farmers reported that insects, especially crickets, will eat other insects if not provided an outside source of chitin.”, do producers use insect-derived chitin as a supplement? If so, do you have a published reference for this?
Do you know how small of a fraction of your presented figures are animals kept alive for breeding (e.g. adult flies or mealworm beetles)? Do you know anything about their lifespans/mortality/fate? Thanks!
Hi! Thanks for the questions.
On the chitin, I haven’t found anything cited that confirms this. A handful of farmers reported this to me, and industry guides often recommend mixing exoskeletons into foods, etc. I think a possibility is that crickets do this for nutrients besides chitin, but that is just the most well known part of exoskeletons, so people mention it.
On breeding: it’s going to vary depending on species and intention. If you’re growing your colony, you’ll need a larger breeding stock, but if you are keeping it the same size, you can use a smaller one. It’s not obvious to me how large they are on various farms, and I’m not certain how to approach estimating it. I think some farms likely just pull adults into breeding programs instead of slaughtering them (at least for crickets), while other farms keep separate breeding colonies (e.g. black soldier flies and mealworms are slaughtered as larvae, so some larvae need to be allowed to grow instead of being killed). My guess is that the lives of animals raised to breed would be better than those killed, but I wouldn’t put much stake in that. There are some good pictures of BSF breeding facilities and descriptions of the process in Bullock et al but I don’t think the source is authoritative.
Thanks!